Счетчик Гейгера: устройство и бытовые вариации. Методы наблюдения и регистрации элементарных частиц

Счетчик Гейгера - Мюллера

Д ля определения уровня радиации применяется специальный прибор – . И для таких приборов бытового и большинства профессиональных устройств дозиметрического контроля, в качестве чувствительного элемента используется счетчик Гейгера . Это часть радиометра позволяет достаточно точно определить уровень радиации.

История появления счетчика Гейгера

В первые, устройство для определения интенсивности распада радиоактивных материалов появилось на свет в 1908 году, его изобрел немецкий физик Ганс Гейгер . Спустя двадцать лет, совместно с еще одним физиком Вальтером Мюллером прибор был усовершенствован, и в честь этих двух ученых и был назван.

В период развития и становления ядерной физики в бывшем советском союзе, также были созданы соответствующие устройства, которые широко применялись в вооруженных силах, на атомных электростанциях, и в специальных группах радиационного контроля гражданской обороны. В состав таких дозиметров, начиная с семидесятых годов прошлого века, входил счетчик, основанный на принципах Гейгера, а именно СБМ-20 . Данный счетчик, ровно, как и еще один его аналог СТС-5 , широко применяется и по настоящий момент, а также входит в состав современных средств дозиметрического контроля .

Рис.1. Газоразрядный счетчик СТС-5.


Рис.2. Газоразрядный счетчик СБМ-20.

Принцип работы счетчика Гейгера – Мюллера

И дея регистрации радиоактивных частиц предложенной Гейгером относительно проста. Она основана на принципе появления электрических импульсов в среде инертного газа под действием высокозаряженной радиоактивной частицы или кванта электромагнитных колебаний. Чтобы подробней остановиться на механизме действия счетчика, остановимся немного на его конструкции и процессах происходящих в нем, при прохождении радиоактивной частицы через чувствительный элемент прибора.

Р егистрирующее устройство представляет собой герметичный баллон или контейнер, который наполняется инертным газом, это может быть неон, аргон и т.д. Такой контейнер может быть изготовлен из металла или стекла, причем газ в нем находиться под низким давлением, это делается специально, чтобы упростить процесс регистрации заряженной частицы. Внутри контейнера расположены два электрода (катод и анод) на которые подается высокое напряжение постоянного тока через специальный нагрузочный резистор.


Рис.3. Устройство и схема включения счетчика Гейгера.

П ри активации счетчика в среде инертного газа на электродах не возникает разряда за счет высокого сопротивления среды, однако ситуация меняется если в камеру чувствительного элемента прибора попадает радиоактивная частица или квант электромагнитных колебаний. В этом случае частица, имеющая заряд достаточно высокой энергии, выбивает некоторое количество электронов из ближайшего окружения, т.е. из элементов корпуса или физически самих электродов. Такие электроны, оказавшись в среде инертного газа, под действием высокого напряжения между катодом и анодом, начинают двигаться в сторону анода, по пути ионизируя молекулы этого газа. В результате они выбивают из молекул газа вторичные электроны, и этот процесс растет в геометрических масштабах, пока между электродами не происходит пробой. В состоянии разряда цепь замыкается на очень короткий промежуток времени, а это обуславливает скачок тока в нагрузочном резисторе, и именно этот скачок и позволяет зарегистрировать прохождение частицы или кванта через регистрационную камеру.

Т акой механизм позволяет зарегистрировать одну частицу, однако в среде, где ионизирующее излучение достаточно интенсивно, требуется быстрое возвращение регистрационной камеры в исходное положение, для возможности определения новой радиоактивной частицы . Это достигается двумя различными способами. Первый из них заключается в том, чтобы на короткий промежуток времени прекратить подачу напряжения на электроды, в этом случае ионизация инертного газа резко прекращается, а новое включение испытательной камеры, позволяет начать регистрацию с самого начала. Такой тип счетчиков носит название несамогасящиеся дозиметры . Второй тип устройств, а именно самогасящиеся дозиметры, принцип их действия заключается в добавлении в среду инертного газа специальных добавок на основе различных элементов, к примеру, бром, йод, хлор или спирт. В этом случае их присутствие автоматически приводит к прекращению разряда. При таком строении испытательной камеры в качестве нагрузочного резистора используются сопротивления иногда на несколько десятков мегаом. Это позволяет во время разряда резко уменьшить разность потенциалов на концах катода и анода, что прекращает токопроводящий процесс и камера возвращается в исходное состояние. Стоит отметить, что напряжение на электродах менее 300 вольт автоматически прекращает поддержание разряда.

Весь описанный механизм позволяет регистрировать огромное количество радиоактивных частиц за короткий промежуток времени.

Виды радиоактивного излучения

Ч тобы понимать, что именно регистрируют счетчики Гейгера – Мюллера , стоит остановиться на том, и какие виды ее существуют. Сразу стоит оговориться, что газоразрядные счетчики, которые входят в состав большинства современных дозиметров, способны только зарегистрировать количество радиоактивных заряженных частиц или квантов, но не могут определить, ни их энергетических характеристик, ни тип излучения. Для этого дозиметры делают более многофункциональными и целевыми, и чтобы правильно их сравнивать следует более точно понимать их возможности.

П о современным представлениям ядерной физики радиационное излучение можно разделить на два типа, первый в виде электромагнитного поля , второй в виде потока частиц (корпускулярное излучение). К первому типу можно отнести поток гамма-частиц или рентгеновское излучение . Главной их особенностью является способность распространяться в виде волны на очень большие расстояния, при этом они достаточно легко проходят через различные предметы и могут без труда проникать в самые различные материалы. Для примера, если человеку нужно спрятаться от потока гамма-лучей, вследствие ядерного взрыва, то укрывшись в подвале дома или бомбоубежища, при условии его относительной герметичности, он сможет обезопасить себя от этого типа излучения только на 50 процентов.


Рис.4. Кванты рентгеновского и гамма-излучения.

Т акой тип излучения носит импульсный характер и характеризуется распространением в окружающей среде в виде фотонов или квантов, т.е. коротких вспышек электромагнитного излучения. Такое излучение может иметь различные энергетические и частотные характеристики, к примеру, рентгеновское излучение имеет в тысячи раз меньшую частоту, чем гамма–лучи. Поэтому гамма-лучи существенно более опасны для человеческого организма и их воздействие носит значительно более разрушительный характер.

И злучение, основанное на корпускулярном принципе, это альфа и бета частицы (корпускулы). Они возникают в результате ядерной реакции, при которой происходит превращение одних радиоактивных изотопов в другие с выделением колоссального количества энергии. При этом бета-частицы представляют собой поток электронов, а альфа-частицы, существенно более крупные и более устойчивые образования, состоящие из двух нейтронов и двух протонов связанных друг с другом. По сути, такое строение имеет ядро атома гелия, поэтому вполне можно утверждать, что поток альфа-частиц это поток ядер гелия.

П ринята следующая классификация , наименьшей проникающей способностью обладают альфа-частицы, чтобы от них защититься, человеку достаточно и плотного картона, большей проникающей способностью обладают бета-частицы, чтобы человек мог обезопасить себя от потока такого излучения ему потребуется уже металлическая защита в несколько миллиметров толщиной (к примеру, алюминиевый лист). От гамма - квантов практически не существует защиты, и они распространяются на значительные расстояния, затухая по мере отдаления от эпицентра или источника, и подчиняясь законам распространения электромагнитных волн.


Рис.5. Радиоактивные частицы альфа и бета типа.

К оличество энергии, которой обладают все эти три типа излучения, также различны, и наибольшей из них обладает поток альфа частиц. Для примера, энергия, которой обладают альфа частицы в семь тысяч раз больше, чем энергия бета-частиц , т.е. проникающая способность различных типов радиации, находится в обратно пропорциональной зависимости от их проникающей способности.

Д ля человеческого организма наиболее опасным типом радиоактивного излучения считаются гамма кванты , за счет высокой проникающей способности, а затем по убывающей, бета-частицы и альфа-частицы. Поэтому, определить альфа-частицы достаточно трудно, если сказать невозможно обычным счетчиком Гейгера - Мюллера , так как для них является препятствием практически любой объект, не говоря уже о стеклянном или металлическом контейнере. Определить бета-частицы таким счетчиком можно, но лишь в том случае, когда их энергии достаточно для прохождения через материал контейнера счетчика.

Для бета-частиц с малыми энергиями обычный счетчик Гейгера – Мюллера неэффективен.

О братная ситуация с гамма-излучением, есть вероятность, что они насквозь пройдут через контейнер, не запустив реакцию ионизации. Для этого в счетчиках устанавливают специальный экран (из плотной стали или свинца), который позволяет снизить энергию гамма-квантов и активировать, таким образом, разряд в камере счетчика.

Базовые характеристики и отличия счетчиков Гейгера – Мюллера

С тоит также осветить некоторые базовые характеристики и отличия различных дозиметров, оборудованных газоразрядными счетчиками Гейгера – Мюллера . Для этого следует сравнить некоторые из них.

Наиболее распространенные счетчики Гейгера – Мюллера оборудованы цилиндрическими или торцевыми датчиками . Цилиндрические похожи на продолговатый цилиндр в виде трубки с небольшим радиусом. Торцевая ионизационная камера имеет округлую или прямоугольную форму небольших размеров, но со значительной торцевой рабочей поверхностью. Иногда встречаются разновидности торцевых камер с удлиненной цилиндрической трубкой с небольшим входным окном с торцевой стороны. Различные конфигурации счетчиков, а именно самих камер, в состоянии регистрировать разные типы излучений, или же их комбинации, (к примеру, комбинации гамма и бета лучей, или всего спектра альфа, бета и гамма). Такое становится возможным благодаря специально разработанной конструкции корпуса счетчика, а также материала, из которого он изготавливается.

Е ще одной важной составляющей для целевого применения счетчиков это площадь входного чувствительного элемента и рабочей зоны . Другими словами это сектор, через который будут попадать, и регистрироваться интересующие нас радиоактивные частицы. Чем больше эта площадь, тем больше счетчик будет в состоянии уловить частиц, и тем сильнее будет его чувствительность к радиации. В паспортных данных к указывается площадь рабочей поверхности, как правило, в квадратных сантиметрах.

Е ще один важный показатель, который указывается в характеристиках к дозиметру, это величина шума (измеряется в импульсах в секунду). Другими словами, этот показатель можно назвать величиной собственного фона. Его можно определить в лабораторных условиях, для этого прибор помещают в хорошо защищенном помещении или камере, как правило, с толстыми стенками из свинца, и регистрируют уровень радиации, который испускает само устройство. Понятно, что если такой уровень будет достаточно существенным, то эти наведенные шумы непосредственно отразятся на погрешности измерений.

Каждый профессиональный и радиации обладает такой характеристикой, как радиационная чувствительность, также измеряется в импульсах в секунду (имп/с), или в импульсах на микрорентген (имп/мкР). Такой параметр, а точнее его использование, напрямую зависит от источника ионизирующего излучения, на который настраивается счетчик, и по которому будет проводиться дальнейшее измерение. Часто настройку производят по источникам, включающим такие радиоактивные материалы как, радий – 226, кобальт – 60, цезий – 137, углерод – 14 и другие.

Е ще один показатель, по которому стоит сравнивать дозиметры, это эффективность регистрации ионного излучения или радиоактивных частиц. Существование этого критерия связано с тем, что не все пройденные через чувствительный элемент дозиметра радиоактивные частицы будут зарегистрированы. Это может происходить в случае, когда квант гамма-излучения не вызвал ионизацию в камере счетчика, или количество прошедших частиц и вызвавших ионизацию и разряд столь велико, что устройство неадекватно их подсчитывает, и по некоторым другим причинам. Чтобы точно определить данную характеристику конкретного дозиметра, его тестируют при помощи некоторых радиоактивных источников, к примеру, плутония- 239 (для альфа-частиц), или таллия – 204, стронция – 90, иттрия - 90 (бета-излучатель), а также других радиоактивных материалов.

С ледующий критерий, на котором необходимо остановиться, это диапазон регистрируемых энергий . Любая радиоактивная частица или квант излучения обладают различной энергетической характеристикой. Поэтому, дозиметры рассчитаны на измерение не только конкретного типа излучения, но и на их соответствующую энергетическую характеристику. Такой показатель измеряется в мегаэлектронвольтах или килоэлектронвольтах, (МэВ, КэВ). К примеру, если бета-частицы не обладают достаточной энергией, то они не смогут выбить электрон в камере счетчика, и поэтому не будут зарегистрированы, или, только высокоэнергетические альфа-частицы смогут пробиться через материал корпуса счетчика Гейгера – Мюллера и выбить электрон.

И сходя из всего вышеизложенного, современные производители дозиметров радиации выпускают широкий ассортимент приборов для различных целевых назначений и конкретных отраслей промышленности. Поэтому стоит рассмотреть конкретные разновидности счетчиков Гейгера.

Различные варианты счетчиков Гейгера – Мюллера

П ервый вариант дозиметров, это устройства, рассчитанные на регистрацию и обнаружение гамма-фотонов и высокочастотного (жесткого) бета-излучения. На данный диапазон измерений рассчитаны практически все из ранее произведенных и современных, как бытовых например: , так и профессиональных дозиметров радиации, например: . Такое излучение обладает достаточной энергией и большой проникающей способностью, чтобы камера счетчика Гейгера смогла их зарегистрировать. Такие частицы и фотоны легко проникают через стенки счетчика и вызывают процесс ионизации, а это легко регистрируется соответствующей электронной начинкой дозиметра.

Д ля регистрации такого типа радиации прекрасно подходят популярные счетчики типа СБМ-20 , имеющие датчик в виде цилиндрической трубки-баллона с расположенными коаксиально проволочными катодом и анодом. Причем, стенки трубки датчика служат одновременно катодом и корпусом, и изготовлены из нержавеющей стали. Данный счетчик имеет следующие характеристики:

  • площадь рабочей зоны чувствительного элемента 8 квадратных сантиметров;
  • радиационная чувствительность по гамма излучению порядка 280 имп/с, или 70 имп/мкР (тестирование проводилось по цезию – 137 при 4 мкР/с);
  • собственный фон дозиметра составляет порядка 1 имп/с;
  • датчик рассчитан на регистрацию гамма-излучения с энергией в диапазоне от 0,05МэВ до 3МэВ, и бета-частиц с энергией 0,3МэВ по нижней границе.


Рис.6. Устройство счетчика Гейгера СБМ-20.

У данного счетчика существовали различные модификации, к примеру, СБМ-20- 1 или СБМ-20У , которые имеют похожие характеристики, но отличаются принципиальной конструкцией контактных элементов и измерительной схемой. Другие модификации этого счетчика Гейгера – Мюллера, а это СБМ-10, СИ29БГ, СБМ-19, СБМ-21, СИ24БГ имеют похожие параметры также, многие из них встречаются в бытовых дозиметрах радиации, которые можно найти в магазинах и на сегодняшний день.

С ледующая группа дозиметров радиации рассчитана на регистрацию гамма-фотонов и рентгеновского излучения . Если говорить о точности таких устройств, то следует понимать, что фотонное и гамма излучение представляет собой кванты электромагнитного излучения, которые движутся со скоростью света (порядка 300 000 км/с), поэтому зарегистрировать подобный объект представляется достаточно трудной задачей.

Эффективность работы таких счетчиков Гейгера составляет порядка одного процента.

Ч тобы повысить ее требуется увеличение поверхности катода. По сути, гамма-кванты регистрируются косвенным способом, благодаря выбитым ими электронам, которые участвуют в последствие в ионизации инертного газа. Чтобы максимально эффективно способствовать этому явлению, специально подбираются материал и толщина стенок камеры счетчика, а также размеры, толщина и материал катода. Здесь, большая толщина и плотность материала могут снизить чувствительность регистрационной камеры, а слишком малая позволит легко попадать высокочастотному бета-излучению в камеру, а также увеличит количество естественных для прибора радиационных шумов, что заглушит точность определения гамма-квантов. Естественно, что точные пропорции подбираются производителями. По сути, на данном принципе, изготавливаются дозиметры на основании счетчиков Гейгера – Мюллера для прямого определения гамма излучения на местности, при этом такой прибор исключает возможность определения любых других видов излучения и радиоактивного воздействия, что позволяет точно определить радиационную загрязненность и уровень негативного воздействия на человека только по гамма-излучению.

В отечественных дозиметрах, которые оснащены цилиндрическими датчиками, устанавливаются следующие их типы: СИ22Г, СИ21Г, СИ34Г, Гамма 1-1, Гамма – 4, Гамма – 5, Гамма – 7ц, Гамма – 8, Гамма – 11 и многие другие. Причем в некоторых типах устанавливается специальный фильтр на входном, торцевом, чувствительном окне, который специально служит для отсечения альфа и бета-частиц, и дополнительно увеличивающий площадь катода, для более эффективного определения гамма-квантов. К таким датчикам можно отнести Бета – 1М, Бета – 2М, Бета – 5М, Гамма – 6, Бета – 6М и прочие.

Ч тобы понять более наглядно принцип их действия стоит подробней рассмотреть один из таких счетчиков. К примеру, торцевой счетчик с датчиком Бета – 2М , который имеет округлую форму рабочего окна, составляющего порядка 14 квадратных сантиметров. При этом радиационная чувствительность к кобальту - 60 составляет порядка 240 имп/мкР. Данный тип счетчика имеет очень низкие показатели собственного шума , который составляет не более 1 импульса в секунду. Это возможно за счет толстостенной свинцовой камеры, которая в свою очередь рассчитана на регистрацию фотонного излучения с энергией в диапазоне от 0,05 МэВ до 3 МэВ.


Рис.7. Торцевой гамма-счетчик Бета-2М.

Для определения гамма излучения вполне можно использовать счетчики для гамма-бета импульсов, которые рассчитаны на регистрацию жестких (высокочастотных и высокоэнергетических) бета-частиц и гамма-квантов. К примеру, модель СБМ – 20. Если в этой модели дозиметра вы хотите исключить регистрацию бета-частиц, то для этого достаточно установить свинцовый экран, или щит из любого другого металлического материала (свинцовый экран эффективнее). Это наиболее распространенный способ, каким пользуются большинство разработчиков при создании счетчиков для гамма и рентгеновского излучения.

Регистрация «мягкого» бета-излучения.

К ак мы уже ранее упоминали, регистрация мягкого бета излучения (излучение с низкими энергетическими характеристиками и сравнительно небольшой частоты), достаточно трудная задача. Для этого требуется обеспечить возможность более легкого их проникновения в регистрационную камеру. Для этих целей, изготавливается специальное тонкое рабочее окно, как правило, из слюды или полимерной пленки, которое практически не создает препятствий для проникновения бета-излучения этого типа в ионизационную камеру. При этом катодом может выступать непосредственно сам корпус датчика, а анод представляет собой систему линейных электродов, которые равномерно распределены и смонтированы на изоляторах. Регистрационное окно выполнено в торцевом варианте, и на пути бета-частиц в таком случае оказывается только тонкая слюдяная пленка. В дозиметрах с такими счетчиками регистрация гамма излучения идет, как приложение и по сути, как дополнительная возможность. А если требуется избавиться от регистрации гамма-квантов, то необходимо минимизировать поверхность катода.


Рис.8. Устройство торцевого счетчика Гейгера.

С тоит отметить, что счетчики для определения мягких бета-частиц были созданы уже достаточно давно и с успехом применялись во второй половине прошлого века. Среди них наиболее распространенными были датчики типа СБТ10 и СИ8Б , которые имели тонкостенные слюдяные рабочие окна. Более современный вариант такого прибора Бета-5 имеет площадь рабочего окна порядка 37 кв/см, прямоугольной формы из слюдяного материала. Для таких размеров чувствительного элемента, прибор в состоянии регистрировать около 500 имп/мкР, если измерять по кобальту – 60. При этом эффективность определения частиц составляет до 80 процентов. Прочие показатели этого прибора выглядят следующим образом: собственный шум составляет 2,2 имп/с., диапазон определения энергий от 0,05 до 3 МэВ, при этом нижний порог определения мягкого бета-излучения составляет 0,1 МэВ.


Рис.9. Торцевой бета-гамма-счетчик Бета-5.

И естественно, стоит упомянуть о счетчиках Гейгера – Мюллера , способных регистрировать альфа-частицы. Если регистрация мягкого бета-излучения представляется достаточно сложной задачей, то зафиксировать альфа-частицу, даже имеющую высокие энергетические показатели, еще более сложная задача. Такую проблему можно решить только соответствующим уменьшением толщины рабочего окна до толщины, которой будет достаточно для прохождения альфа-частицы в регистрационную камеру датчика, а также практически полным приближением входного окна к источнику излучения альфа-частиц. Такое расстояние должно равняться 1 мм. Понятно, что такое устройство автоматически будет регистрировать любые другие типы излучения, и, причем с достаточно высокой эффективностью. В этом есть и положительная и отрицательная сторона:

Положительная – такой прибор можно использовать для самого широкого спектра анализа радиоактивного излучения

Отрицательная – за счет повышенной чувствительности, будет возникать значительное количество шумов, которые затруднят анализ полученных регистрационных данных.

К роме того, слишком тонкое слюдяное рабочее окно хотя и повышает возможности счетчика, однако в ущерб механической прочности и герметичности ионизационной камеры, тем более что само окно имеет достаточно большую площадь рабочей поверхности. Для сравнения, в счетчиках СБТ10 и СИ8Б, о которых мы упоминали выше, при площади рабочего окна около 30 кв/см, толщина слюдяного слоя составляет 13 – 17 мкм, а при необходимой толщине для регистрации альфа-частиц в 4-5 мкм, входное окно можно сделать лишь не более 0,2 кв/см., речь идет о счетчике СБТ9.

О днако, большую толщину регистрационного рабочего окна можно компенсировать близостью к радиоактивному объекту, и наоборот при сравнительно небольшой толщине слюдяного окна, появляется возможность зарегистрировать альфа-частицу на уже большем расстоянии, чем 1 -2 мм. Стоит привести пример, при толщине окна до 15 мкм, приближение к источнику альфа-излучения должно составлять менее 2 мм, при этом под источником альфа-частиц понимается излучатель плутоний – 239 с энергией излучения 5 МэВ. Продолжим, при толщине входного окна до 10 мкм, зарегистрировать альфа-частицы возможно уже на расстоянии до 13 мм, если сделать слюдяное окно толщиной до 5 мкм, то альфа-излучение будет регистрироваться на расстоянии 24 мм, и т.д. Еще один важный параметр, который напрямую влияет на возможность обнаружения альфа-частиц, это их энергетический показатель. Если энергия альфа-частицы больше чем 5 МэВ, то соответственно увеличиться расстояние ее регистрации для толщины рабочего окна любого типа, а если энергия меньше, то и расстояние требуется уменьшать, вплоть до полной невозможности зарегистрировать мягкое альфа-излучение.

Е ще одним важным моментом, позволяющим увеличить чувствительность альфа счетчика, это уменьшение регистрационной способности для гамма-излучения. Чтобы сделать это, достаточно минимизировать геометрические размеры катода, и гамма-фотоны будут проходить через регистрационную камеру не вызывая ионизации. Такая мера позволяет уменьшить влияние на ионизацию гамма-квантов в тысячи, и даже десятки тысяч раз. Устранить влияние бета-излучения на регистрационную камеру уже не представляется возможным, однако из этой ситуации есть довольно простой выход. Вначале регистрируется альфа и бета излучение суммарного типа, затем устанавливается фильтр из плотной бумаги, и совершается повторный замер, который зарегистрирует только бета-частицы. Величина альфа-излучения в этом случае рассчитывается как разность общего излучения и отдельного показателя расчета бета-излучения.

Для примера , стоит предложить характеристики современного счетчика Бета-1, который позволяет зарегистрировать альфа, бета, гамма излучения. Вот эти показатели:

  • площадь рабочей зоны чувствительного элемента 7 кв/см;
  • толщина слюдяного слоя 12 мкм, (расстояние эффективного обнаружения альфа-частиц по плутонию – 239, порядка 9 мм,. По кобальту - 60 радиационная чувствительность достигается порядка 144 имп/мкР);
  • эффективность измерения радиации для альфа-частиц - 20% (по плутонию - 239), бета-частиц – 45% (по таллию -204), и гамма-квантов – 60% (по составу стронций – 90, иттрий – 90);
  • собственный фон дозиметра составляет порядка 0,6 имп/с;
  • датчик рассчитан на регистрацию гамма-излучения с энергией в диапазоне от 0,05МэВ до 3МэВ, и бета-частиц с энергией более 0,1 МэВ по нижней границе, и альфа-частиц с энергией 5МэВ и более.

Рис.10. Торцевой альфа-бета-гамма-счетчик Бета-1.

К онечно, существует еще достаточно широкий ряд счетчиков , которые предназначены для более узкого и профессионального использования. Такие приборы имеют ряд дополнительных настроек и опций (электрические, механические, радиометрические, климатические и пр.), которые включают в себя множество специальных терминов и возможностей. Однако на них мы концентрироваться не будем. Ведь для понимания базовых принципов действия счетчиков Гейгера – Мюллера , описанных выше моделей вполне достаточно.

В ажно также упомянуть, что существуют специальные подклассы счетчиков Гейгера , которые специально сконструированы для определения различных видов другого излучения. К примеру, для определения величины ультрафиолетового излучения, для регистрации и определения медленных нейтронов, которые функционируют по принципу коронного разряда, и другие варианты, которые не относятся к данной теме напрямую, и рассматриваться не будут.

1.4 Счётчик Гейгера-Мюллера

В пропорциональном счётчике газовый разряд развивается только в части объёма газа. В ней образуется сначала первичная ионизация, а затем и лавина электронов. Остальной объём не охватывается газовым разрядом. С повышением напряжения критическая область расширяется. В ней увеличивается концентрация возбуждённых молекул, а следовательно, и количество испущенных фотонов. Под действием фотонов из катода и молекул газа вырывается

всё больше и больше фотоэлектронов. Последние в свою очередь дают начала новым лавинам электронов в объёме счётчика, не занятом газовым разрядом от первичной ионизации. Таким образом, повышение напряжения U приводит к распространению газового разряда по объёму счётчика. При некотором напряженииU п . Называемом пороговым, газовый разряд охватывает весь объём счётчика. При напряженииU п начинается область Гейгера-Мюллера.

Счётчик Гейгера (или счётчик Гейгера-Мюллера) − газонаполненный счётчик заряженных элементарных частиц, электрический сигнал с которого усилен за счёт вторичной ионизации газового объёма счётчика и не зависит от энергии, оставленной частицей в этом объёме.Изобретён в 1908 г. Х.Гейгером и Э.Резерфордом, позднее усовершенствован Гейгером и В. Мюллером. Счетчики Гейгера-Мюллера - самые распространенные детекторы (датчики) ионизирующего излучения.

Гейгера - Мюллера счётчик - газоразрядный прибор для обнаружения и исследования различного рода радиоактивных и др. ионизирующих излучений:α - и β -частиц, γ -квантов, световых и рентгеновских квантов, частиц высокой энергии в космических лучах и на ускорителях. Гамма-кванты регистрируются счётчиком Гейгера – Мюллера по вторичным ионизирующим частицам - фотоэлектронам, комптоновским электронам, электронно-позитронным парам; нейтроны регистрируются по ядрам отдачи и продуктам ядерных реакций, возникающим в газе счётчика. Работает счётчик при напряжениях, соответствующих самостоятельному

коронному разряду (участок V, Рис. 21 ).

Рис. 21. Схема включения счетчика Гейгера

Разность потенциалов приложена (V ) между стенками и центральным электродом через сопротивлениеR , зашунтированное конденсатором

C1 .

Этот счётчик обладает практически стопроцентной вероятностью регистрации заряженной частицы, так как для

возникновения разряда достаточно одной электрон-ионной пары.

Конструктивно счётчик Гейгера устроен также как пропорциональный счётчик, т.е. представляет собой конденсатор (как правило, цилиндрический), с сильно неоднородным электрическим полем. К внутреннему электроду (тонкой металлической нити) приложен положительный потенциал (анод), к внешнему – отрицательный (катод). Электроды заключены в герметически замкнутый резервуар, наполненный каким-либо газом до давления 13-26 кн/м 2 (100-200 мм pm .ст .). К электродам счётчика прикладывается напряжение в несколько сотв . На нить подаётся знак + через сопротивлениеR .

Функционально счётчик Гейгера также повторяет пропорциональный счётчик, но отличается от последнего тем, что за счёт более высокой разности потенциалов на электродах работает в таком режиме, когда достаточно появления в объёме детектора одного электрона, чтобы развился мощный лавинообразный процесс, обусловленный вторичной ионизацией (газовое усиление), который способен ионизовать всю область вблизи нити-анода. При этом импульс тока достигает предельного значения (насыщается) и не зависит от первичной ионизации. Развиваясь лавинообразно, этот процесс завершается образованием в межэлектродном пространстве электронно-ионного облака, резко увеличивающего его проводимость. По существу, при попадании в счетчик Гейгера частицы в нём вспыхивает (зажигается) самостоятельный газовый разряд, видимый (если баллон прозрачный) даже простым газом. При этом коэффициент газового усиления может достигать 1010 , а величина импульса десятков вольт.

Возникает вспышка коронного разряда и через счётчик течёт ток.

Распределение электрического поля в счётчике таково, что разряд развивается лишь в вблизи анода счётчика на расстоянии нескольких диаметров нити. Электроны быстро скапливаются на нити (не более 10-6 сек), вокруг которой образуется «чехол» из положительных ионов. Положительный пространственный заряд увеличивает эффективный диаметр анода и снижает тем самым напряжённость поля, поэтому разряд прерывается. По мере удаления слоя положительных ионов от нити его экранирующее действие ослабляется и напряжённость поля вблизи анода становится достаточной для образования новой вспышки разряда. Положительные ионы, приближаясь к катоду, выбивают из последнего электроны, в результате чего образуются нейтральные атомы инертного газа в возбуждённом состоянии. Возбуждённые атомы при

достаточном приближении к катоду, выбивают из его поверхности электроны, которые становятся родоначальниками новых лавин. Без внешнего воздействия такой счётчик находился бы в длительном прерывистом разряде.

Таким образом, при достаточно большом R (108 -1010 ом ) на нити скапливается отрицательный заряд

и разность потенциалов между нитью и катодом быстро падает, в результате чего разряд обрывается. После этого чувствительность счётчика восстанавливается через 10-1 -10-3 сек (время разрядки ёмкости С через сопротивлениеR ). Именно такое время требуется, чтобы медленные положительные ионы, заполнившие пространство вблизи нити-анода после пролёта частицы и прохождения электронной лавины, ушли к катоду,

и восстановилась чувствительность детектора. Такое большое время нечувствительности неудобно для многих применений.

Для практического использования несамогасящего счётчика Гейгера используются различные способы прекращения разряда:

а) Использование электронных схем гашения разряда в газе. Приспособленная для этого электронная схема, в нужное время выдаёт на счётчик «противосигнал», который прекращает самостоятельный разряд и «выдерживает» счётчик на время до полной нейтрализации возникших заряженных частиц. Характеристики такого счётчика со схемой гашения разряда близки к характеристикам самогасящихся счётчиков и иногда превосходят их.

б) Гашение за счёт подбора величин нагрузочного сопротивления и эквивалентной ёмкости, а также величины напряжения на счётчике.

В зависимости от механизма гашения разряда различают две группы счётчиков: несамогасящиеся и самогасящиеся. В несамогасящихся счётчиках «мёртвое» время слишком велико (10-2 сек), для его

уменьшения применяют электронные схемы гашения разряда, которые снижают разрешающее время до времени собирания положительных ионов на катоде (10-4 сек).

Сейчас несамогасящиеся счётчики, в которых гашение разрядов обеспечивается сопротивлением R , вытеснены самогасящимися счётчиками, которые к тому же более стабильны. В них благодаря специальному газовому наполнению (инертный газ с примесью сложных молекул, например паров спирта, и небольшой

примесью галогенов - хлора, брома, йода) разряд сам собой обрывается даже при малых сопротивлениях R . Время нечувствительности самогасящегося счётчика ~10-4 сек .

В 1937 г. Трост обратил внимание на то обстоятельство, что если в счетчик, наполненный аргоном,

добавить небольшое количество (несколько процентов) паров этилового спирта (С2 H5 OH), то разряд, вызванный в счетчике ионизирующей частицей, погаснет сам по себе. Впоследствии выяснилось, что самопроизвольное погасание разряда в счетчике имеет место и при добавлении к аргону паров других органических соединений, обладающих сложными многоатомными соединениями. Вещества эти называют обычно гасящими, а счётчики Гейгера-Мюллера, в которых используются эти вещества, называются счетчиками - самогасящегося типа. Самогасящийся счётчик наполняется смесью двух (или нескольких) газов. Один газ, основной, составляет в смеси около 90 %, другой, гасящий - около 10 %. Компоненты рабочей смеси должны удовлетворять обязательному условию, заключающемуся в том, что потенциал ионизации гасящего газа должен быть ниже первого потенциала возбуждения основного газа.

Замечание. Для регистрации рентгеновского излучения часто применяются проволочные ксеноновые детекторы. Примером может служить первый отечественный сканирующий цифровой медицинский флюорограф МЦРУ СИБИРЬ. Другое приложение рентгеновских счётчиков - рентгенофлуоресцентный волнодисперсионный спектрометр (например, Venus 200), предназначенный для определения различных элементах в веществах и материалах. В зависимости от определяемого элемента возможно применение следующих детекторов: - проточного пропорционального детектора с окнами толщиной 1, 2, 6 микрон, непроточного неонового детектора с окнами толщиной 25 и 50 микрон, - непроточного криптонового детектора с окном толщиной 100 микрон, - ксенонового детектора с окном 200 микрон и сцинтилляционного детектора с окном 300 микрон.

Самогасящиеся счётчики допускают большую скорость счёта без специальных электронных схем

гашения разряда, поэтому они нашли широкое применение. Самогасящиеся счётчики с органическими гасящими примесями имеют ограниченный срок работы (108 -1010 импульсов). При использовании в качестве гасящей примеси одного из галогенов (чаще всего применяется менее активный Br2 ) срок службы становится практически неограниченным из-за того, что двухатомные молекулы галогена после диссоциации на атомы (в процессе разряда) образуются снова. К недостаткам галогенных счётчиков следует отнести сложность технологии их изготовления из-за химической активности галогенов и большое время нарастания переднего фронта импульсов из-за прилипания первичных электронов к молекуле галогена. «Затягивание» переднего фронта импульса в галогенных счётчиках делает их неприменимыми в схемах совпадений.

Основными характеристиками счётчика являются: счётная характеристика – зависимость скорости счёта от величины рабочего напряжения; эффективность счётчика – выраженное в процентах отношение числа считаемых частиц к числу всех частиц, попадающих в рабочий объём счётчика; разрешающее время –

минимальный интервал времени между импульсами, при котором они регистрируются раздельно и срок службы счётчиков.

Рис. 22. Схема возникновения мёртвого времени в счётчике Гейгера-Мюллера. (Форма импульса при разряде в счётчике Гейгера-Мюллера).

Отрезок времени, необходимый для восстановления радиационной чувствительности счетчика Гейгера и фактически определяющий его быстродействие - «мертвое» время - является важной его паспортной характеристикой.

Если в счётчике Гейгера-Мюллера в момент временt 0 начался разряд, вызванный ядерной частицей, то напряжение на счётчике резко падает. Счётчик в течение определённого времени, которое называется мёртвым временемτ м , не способен регулировать другие частицы. С моментаt 1 , т.е. по истечении мёртвого времени, в счётчике снова возможно возникновение самостоятельного разряда. Однако вначале амплитуда импульса ещё мала. Только после того, как пространственный заряд достигнет поверхности катода, в счётчике образуются импульсы нормальной амплитуды. Отрезок времениτ с между моментомt 0 , когда в счётчике возник самостоятельный разряд, и моментом восстановления рабочего напряженияt 3 называется временем восстановления. Для того чтобы регистрирующее устройство могло сосчитать импульс, необходимо, чтобы его амплитуда превышала определённую величинуU п . Интервал времени между моментом возникновения самостоятельного разрядаt 0 и моментом образования амплитудыU п импульсаt 2 называется разрешающим временемτ p счётчика Гейгера-Мюллера. Разрешающее времяτ p несколько больше мёртвого времени.

Если ежесекундно в счетчик попадает большое число частиц (несколько тысяч и более), то разрешающее время τ р по величине будет сравнимо со средним промежутком времени между импульсами, поэтому значительное число импульсов не сосчитывается. Пустьm - наблюдаемая скорость счета счетчика. Тогда доля времени, в течение которого счетная установка нечувствительна, равнаm τ . Следовательно, число импульсов, потерянных за единицу времени, равноnm τ р , гдеn - скорость счета, которая наблюдалась бы в том случае, если бы разрешающее время имело пренебрежимо малую величину. Поэтому

n – m = nmτ р

−m τ

Поправка в скорости счета, которая дается этим уравнением, называется поправкой на мертвое время установки.

Галогеновые самогасящиеся счётчики отличаются самым низким напряжением питания, превосходными параметрами выходного сигнала и достаточно высоким быстродействием, они оказались особенно удобными для применения в качестве датчиков ионизирующего излучения в бытовых приборах радиационного контроля.

Каждая фиксируемая счетчиком частица вызывает появление в его выходной цепи короткого импульса. Число импульсов, возникающих в единицу времени, - скорость счета счетчика Гейгера - зависит от уровня ионизирующей радиации и напряжения на его электродах. Типичный график зависимости скорости счета от напряжения питания V показан наРис. 23. ЗдесьV заж - напряжение начала счета;V 1 иV 2 - нижняя и верхняя граница рабочего участка, так называемого плато, на котором скорость счета почти не зависит от напряжения питания счетчика. Рабочее напряжениеV раб обычно выбирают в середине этого участка. Ему соответствуетN р - скорость счета в этом режиме.

Рис. 23. Зависимость скорости счета от напряжения питания в счетчике Гейгера (Счётная характеристика)

Зависимость скорости счета от уровня радиационного облучения счетчика - важнейшая его характеристика. График этой зависимости имеет почти линейный характер и поэтому нередко радиационную чувствительность счетчика выражают через имп/мкР (импульсов на микрорентген; эта размерность следует из отношения скорости счета - имп/с - к уровню радиации - мкР/с). В

тех случаях, когда она не указана (нередких, к сожалению), судить о радиационной чувствительности

счетчика приходится по другому его тоже очень важному параметру - собственному фону. Так называют скорость счета, причиной которой являются две составляющие: внешняя - естественный радиационный фон, и внутренняя - излучение радионуклидов, оказавшихся в самой конструкции счетчика, а также спонтанная электронная эмиссия его катода. («фон» в дозиметрии имеет почти тот же смысл, что и «шум» в радиоэлектронике; в обоих случаях речь идет о принципиально неустранимых воздействиях на аппаратуру.)

Еще одной важной характеристикой счетчика Гейгера является зависимость его радиационной чувствительности от энергии («жесткости») ионизирующих частиц. На профессиональном жаргоне график этой зависимости называют «ходом с жесткостью». В какой мере эта зависимость важна, показывает график на рисунке. «Ход с жесткостью» будет влиять, очевидно, на точность проводимых измерений.

В своей основе счетчик Гейгера очень прост. В хорошо вакуумированный герметичный баллон с двумя электродами введена газовая смесь, состоящая в основном из легко ионизируемых неона и аргона. Баллон может быть стеклянным, металлическим и др. Обычно счетчики воспринимают излучение всей своей поверхностью, но существуют и такие, у которых для этого в баллоне предусмотрено специальное «окно».

Счетчики Гейгера способны реагировать на самые разные виды ионизирующего излучения - α ,β ,γ , ультрафиолетовое, рентгеновское, нейтронное. Но реальная спектральная чувствительность счетчика в значительной мере зависит от его конструкции. Так, входное окно счетчика, чувствительного кα - и мягкому β -излучению, должно быть очень тонким; для этого обычно используют слюду толщиной 3...10 мкм. Баллон счетчика, реагирующего на жесткоеβ - и γ -излучение, имеет обычно форму цилиндра с толщиной стенки 0,05....0,06 мм (он служит и катодом счетчика). Окно рентгеновского счетчика изготавливают из бериллия, а ультрафиолетового - из кварцевого стекла.

Рис. 24. Зависимость скорости счета от энергии гамма-квантов («ход с жесткостью») в счетчике Гейгера

В счетчик нейтронов вводят бор, при взаимодействии с которым поток нейтронов преобразуется в легко регистрируемые α - частицы. Фотонное излучение -ультрафиолетовое, рентгеновское, γ -излучение - счетчики Гейгера воспринимают опосредованно - через фотоэффект, комптон-эффект, эффект рождения пар; в каждом случае происходит преобразование взаимодействующего с веществом катода излучения в поток электронов.

Рис. 25. Радиометрическая установка на базе счётчика Гейгера-Мюллера.

То, что счетчик Гейгера является лавинным прибором, имеет и свои минусы – по реакции такого прибора нельзя судить о первопричине его возбуждения. Выходные импульсы, генерируемые счетчиком Гейгера под действием α -частиц, электронов, γ -квантов (в счетчике, на все эти виды излучения реагирующем), ничем не различаются. Сами

частицы, их энергии совершенно исчезают в порождаемых ими лавинах-близнецах.

О качестве счетчика Гейгера-Мюллера судят обычно по виду его счетной характеристики. Для «хороших» счетчиков протяженность счетной части составляет 100-300 В при наклоне плато не более 3 - 5 % на 100 В. Рабочее напряжение счетчикаV раб выбирают обычно в середине его счетной области.

Поскольку скорость счета частиц на плато изменяется пропорционально интенсивности облучения ядерными частицами, счетчики Гейгера-Мюллера с успехом используются для относительных измерений активности радиоактивных источников. Абсолютные измерения затрудняются вследствие учета большого числа дополнительных поправок. При работе с источниками малой интенсивности следует учесть фон счетчика, обусловленный космическим излучением, радиоактивностью окружающей среды и радиоактивным загрязнением материала счетчика. В качестве наполняющих счетчик газов первоначально чаще всего использовались благородные газы, в частности, аргон и неон. У большинства счетчиков давление лежит в интервале от 7 до 20 см рт.ст, хотя они иногда работают и при больших давлениях, вплоть до 1 атм. В счётчиках такого типа необходимо применять специальные электронные схемы для гашения газового разряда, возникшего при попадании в счетчик ионизирующего излучения. Поэтому такие счетчики называются счетчиками Гейгера-Мюллера несамогасящегося типа. Они обладают весьма плохой разрешающей способностью. Применение схем для принудительного гашения разряда, улучшая

разрешающую способность, существенно усложняет экспериментальную установку, особенно в случае использования большого числа счетчиков одновременно.

Типичный стеклянный счётчик Гейгера-Мюллера представлен наРис. 25.

Рис. 25. Стеклянный счётчик Гейгера-Мюллера: 1 –

геометрически запаянная стеклянная трубка; 2 – катод (тонкий слой меди на трубке из нержавеющей стали); 3 – вывод катода; 4 – анод (тонкая натянутая нить).

В Табл. 1 приведены сведения о самогасящихся галогеновых счетчиках Гейгера

российского производства, наиболее подходящих для бытовых приборов радиационного контроля.

Обозначения: 1 - рабочее напряжение, В; 2 - плато - область малой зависимости скорости счета от напряжения питания, В; 3 - собственный фон счетчика, имп/с, не более; 4 - радиационная чувствительность счетчика, имп/мкР (* - по кобальту-60); 5 - амплитуда выходного импульса, В, не менее; 6 - габариты, мм - диаметр х длина (длина х ширина х

высота); 7.1 - жесткое β - иγ - излучение; 7.2 - то же и мягкоеβ - излучение; 7.3 - то же иα - излучение; 7.4 -γ - излучение.

Рис.26. Часы со встроенным счётчиком Гейгера-Мюллера.

Счетчик Гейгера-Мюллера, типа СТС-6, считаетβ иγ частицы и относится к самогасящимся счетчикам. Он представляет собой цилиндр из нержавеющей стали с толщиной стенок 50 мг/(см2 с) ребрами жесткости для прочности. Счетчик заполнен смесью паров неона и брома. Бром гасит разряд.

Конструкции счётчиков весьма разнообразны и зависят от вида излучения и его энергии, а также от методики измерения).

Радиометрическая установка на базе счётчика Гейгера - Мюллера представлена на Рис. 27. Напряжение на счётчик подаётся с высоковольтного источника питания. Импульсы со счетчика подаются в блок усилителя, где они усиливаются, и затем регистрируются пересчётным устройством.

Счётчики Гейгера-Мюллера применяются для регистрации всех видов излучения. Они могут быть использованы как для абсолютных, так и для относительных измерений радиоактивных излучений.

Рис. 27. Конструкция счётчиков Гейгера-Мюллера: а – цилиндрический; б

внутреннего наполнения; г – проточный для жидкостей. 1 – анод (собирающий электрод); 2 – катод; 3 – стеклянный баллон; 4 – выводы электродов; 5 – стеклянная трубка; 6 – изолятор; 7 – слюдяное окно; 8 – кран для впуска газа.

Строение и принцип работы счетчика Гейгера – Мюллера

В последнее время, внимание к радиационной безопасности со стороны обычных граждан в нашей стране все в большей степени возрастает. И это связано не только с трагическими событиями на чернобыльской АЭС и дальнейшими ее последствиями, но и с различного рода происшествиями, которые периодически случаются в том или ином месте планеты. В связи с этим, в конце прошлого века стали появляться приборы дозиметрического контроля радиации бытового назначения . И такие приборы очень многим людям спасли не только здоровье, но иногда и жизнь, и это касается не только прилежащих к зоне отчуждения территориях. Поэтому вопросы радиационной безопасности актуальны в любом месте нашей страны и по сегодняшний день.

В се бытовые и практически все профессиональные современные дозиметры оснащаются . По-другому его можно назвать чувствительным элементом дозиметра. Данный прибор был изобретен в 1908 году немецким физиком Гансом Гейгером, а спустя двадцать лет, данную разработку усовершенствовал еще один физик Вальтер Мюллер, и именно принцип этого устройства и применяется в и по настоящий момент.

Н екоторые современные дозиметры имеют сразу по четыре счетчика, что позволяет повысить точность измерений и чувствительность прибора, а также уменьшить время проведения замера. Большинство счетчиков Гейгера – Мюллера способны регистрировать гамма-излучение, высокоэнергетическое бета-излучение и рентгеновские лучи. Однако есть специальные разработки для определения альфа-частиц высоких энергий. Для настройки дозиметра на определение только гамма-излучения, самого опасного из трех видов радиации, чувствительную камеру укрывают специальным кожухом из свинца или другой стали, что позволяет отсечь проникновение в счетчик бета-частиц.

В современных дозиметрах бытового и профессионального назначения широко применяются датчики типа СБМ-20, СБМ-20-1, СБМ-20У, СБМ-21, СБМ-21-1. Они отличаются габаритными размерами камеры и другими параметрами, для линейки 20-х датчиков характерны следующие габариты, длина 110 мм, диаметр 11 мм, а для 21-й модели, длина 20-22 мм при диаметре 6мм. Важно понимать, что чем больше размеры камеры, тем большее количество радиоактивных элементов будет через нее пролетать, и тем большей чувствительностью и точностью она обладает. Так, для 20-х серий датчика характерны размеры в 8-10 раз большие, чем для 21-й, примерно в таких же пропорциях мы будем иметь разницу в чувствительности.

К онструкцию счетчика Гейгера можно схематически описать так. Датчик, состоящий из цилиндрического контейнера, в который закачан инертный газ (к примеру, аргон, неон или их смеси) под минимальным давлением, это делается для облегчения возникновения электрического разряда между катодом и анодом. Катод, чаще всего, представляет собой весь металлический корпус чувствительного датчика, а анод небольшую проволочку, размещенную на изоляторах. Иногда катод дополнительно оборачивают защитным кожухом из нержавейки или свинца, это делается для настройки счетчика на определение только гамма-квантов.

Д ля бытового применения, в настоящее время, чаще всего используются датчики торцевого исполнения (к примеру, Бета-1, Бета-2). Такие счетчики устроены таким образом, что способны обнаруживать и регистрировать даже альфа-частицы. Такой счетчик представляет собой плоский цилиндр с расположенными внутри электродами, и входным (рабочим) окном, выполненным из слюдяной пленки толщиной всего 12 мкм. Такая конструкция позволяет определить (с близкого расстояния) высокоэнергетические альфа-частицы и слабоэнергетические бета-частицы. При этом площадь рабочего окна счетчиков Бета-1 и Бета 1-1 составляет 7 кв.см. Площадь слюдяного рабочего окна для прибора Бета-2 в 2 раза больше, чем у Бета-1, его вполне можно использовать для определения , и т.д.

Е сли говорить о принципе работы камеры счетчика Гейгера, то вкратце ее можно описать следующим образом. При активации , на катод и анод подается высокое напряжение (порядка 350 – 475 вольт), через нагрузочный резистор, однако между ними не происходит разряда из-за инертного газа, служащего диэлектриком. При попадании в камеру , ее энергии оказывается достаточно, чтобы выбить свободный электрон из материала корпуса камеры или катода, этот электрон лавинообразно начинает выбивать свободные электроны из окружающего инертного газа и происходит его ионизация, которая в итоге приводит к разряду между электродами. Цепь замыкается, и данный факт можно зарегистрировать при помощи микросхемы прибора, что является фактом обнаружения или кванта гамма или рентгеновского излучения. Затем камера приходит в исходное состояние, что позволяет обнаружить следующую частицу.

Ч тобы процесс разряда в камере прекратить и подготовить камеру для регистрации следующей частицы, существует два способа, один из них основан на том, что на очень короткий промежуток времени прекращается подача напряжения на электроды, что прекращает процесс ионизации газа. Второй способ основан на добавлении в инертный газ еще одного вещества, к примеру, йода, спирта и других веществ, при этом они приводят к уменьшению напряжения на электродах, что также прекращает процесс дальнейшей ионизации и камера становится способной обнаружить следующий радиоактивный элемент. При данном методе используется нагрузочный резистор большой емкости.

П о количеству разрядов в камере счетчика и можно судить об уровне радиации на измеряемой местности или от конкретного предмета.

Неконтролируемое ионизирующее излучение в любых проявлениях опасно. Поэтому существует необходимость его регистрации, наблюдения и учета. Ионизационный метод регистрации ИИ - один из методов дозиметрии, позволяющий быть в курсе реальной радиационной обстановки.

Что такое ионизационный метод регистрации излучения?

В основе этого метода лежит регистрация эффектов ионизации. Электрическое поле не дает ионам рекомбинировать и направляет их движение к соответствующим электродам. Благодаря этому появляется возможность замерить величину заряда ионов, образующихся под действием ионизирующего излучения.

Детекторы и их особенности

В качестве детекторов при ионизационном методе используются:

  • ионизационные камеры;
  • счетчики Гейгера—Мюллера;
  • пропорциональные счетчики;
  • полупроводниковые детекторы;
  • и др.

Все детекторы за исключением полупроводниковых - это баллоны, наполненные газом, в которые вмонтированы два электрода с подведенным к ним напряжением постоянного тока. На электродах собираются ионы, образующиеся при прохождении ионизирующего излучения сквозь газовую среду. Отрицательные ионы движутся к аноду, а положительные к катоду, образуя ионизационный ток. По его значению можно оценить количество зарегистрированных частиц и определить интенсивность излучения.

Принцип работы счетчика Гейгера-Мюллера

В основе работы счетчика лежит ударная ионизация. Движущиеся в газе электроны (выбитые излучением при попадании на стенки счетчика) сталкиваются с его атомами, выбивая из них электроны, в результате чего создаются свободные электроны и положительные ионы. Существующее между катодом и анодом электрическое поле придает свободным электронам ускорение, достаточное для начала ударной ионизации. Вследствие этой реакции появляется большое количество ионов с резким возрастанием тока через счетчик и импульсом напряжения, который фиксируется регистрирующим устройством. Далее лавинный разряд гасится. Только после этого может быть зарегистрирована следующая частица.

Отличие ионизационной камеры и счетчика Гейгера-Мюллера.

В газовом счетчике (счетчик Гейгера) используется вторичная ионизация, создающая большое газовое усиление тока, которое возникает вследствие того, что скорость движущихся ионов, созданных ионизирующим веществом, настолько велика, что образуются новые ионы. Они, в свою очередь, также могут ионизировать газ, тем самым, развивая процесс. Таким образом, каждая частица образует ионов в 10 6 раз больше, чем это возможно в ионизационной камере, позволяя, таким образом, измерять ионизирующее излучение даже малой интенсивности.

Полупроводниковые детекторы

Основным элементом полупроводниковых детекторов является кристалл, а принцип работы отличается от ионизационной камеры только тем, что ионы создаются в толще кристалла, а не в газовом промежутке.

Примеры дозиметров на основе ионизационных методов регистрации

Современный прибор этого типа - клинический дозиметр 27012 с набором ионизационных камер, который на сегодняшний день является эталоном.

Среди индивидуальных дозиметров получили распространение КИД-1, КИД-2,ДК-02, ДП-24 и др., а также ИД-0,2, который является современным аналогом упомянутых выше.

В 1908 году физик из Германии Ганс Гейгер трудился в химических лабораториях, принадлежащих Эрнсту Резерфорду. Там же им было предложено испытать счетчик заряженных частиц, представлявший собой ионизированную камеру. Камера являлась электро-конденсатором, который наполняли газом под высоким давлением. Еще Пьер Кюри применял это устройство на практике, изучая электричество в газах. Идея Гейгера - обнаруживать излучения ионов - была связана с их влиянием на уровень ионизации летучих газов.

В 1928 г. немецкий ученый Вальтер Мюллер, работавший с Гейгером и под его началом, создал несколько счетчиков, регистрирующих ионизирующие частицы. Устройства были нужны для дальнейшего исследования радиации. Физика, будучи наукой экспериментов, не могла бы существовать без измерительных конструкций. Были открыты только несколько излучений: γ, β, α. Задача Гейгера состояла в том, чтобы измерить чувствительными приборами все виды излучения.

Счетчик Гейгера-Мюллера - простой и дешевый радиоактивный датчик. Это не точный инструмент, который фиксирует отдельные частицы. Техника измеряет общую насыщенность ионизирующего излучения. Физики используют его с другими датчиками, чтобы добиться точности расчетов при проведении экспериментов.

Немного об ионизирующих излучениях

Можно было бы сразу перейти к описанию детектора, но его работа покажется непонятной, если вы мало знаете об ионизирующих излучениях. При излучении происходит эндотермическое влияние на вещество. Этому способствует энергия. К примеру, ультрафиолет или радиоволна к таким излучениям не относятся, а вот жесткий ультрафиолетовый свет - вполне. Здесь определяется граница влияния. Вид именуется фотонным, а сами фотоны - это γ-кванты.

Эрнст Резерфорд поделил процессы испускания энергии на 3 вида, используя установку с магнитным полем:

  • γ - фотон;
  • α - ядро атома гелия;
  • β - электрон с высокой энергией.

От частиц α можно защититься бумажным полотном. β проникают глубже. Способность проникновения γ самая высокая. Нейтроны, о которых ученые узнали позже, являются опасными частицами. Они воздействуют на расстоянии нескольких десятков метров. Имея электрическую нейтральность, они не вступают в реакцию с молекулами разных веществ.

Однако нейтроны легко попадают в центр атома, провоцируют его разрушение, из-за чего образуются радиоактивные изотопы. Распадаясь, изотопы создают ионизирующие излучения. От человека, животного, растения или неорганического предмета, получившего облучение, радиация исходит несколько дней.

Устройство и принцип работы счетчика Гейгера

Прибор состоит из металлической или стеклянной трубки, в которую закачан благородный газ (аргоново-неоновая смесь либо вещества в чистом виде). Воздуха в трубке нет. Газ добавляется под давлением и имеет примесь спирта и галогена. По всей трубке протянута проволока. Параллельно ей располагается железный цилиндр.

Проволока называется анодом, а трубка - катодом. Вместе они - электроды. К электродам подводится высокое напряжение, которое само по себе не вызывает разрядных явлений. В таком состоянии индикатор будет пребывать, пока в его газовой среде не возникнет центр ионизации. От источника питания к трубке подключается минус, а к проволоке - плюс, направленный через высокоуровневое сопротивление. Речь идет о постоянном питании в десятки сотен вольт.

Когда в трубку попадает частица, с ней сталкиваются атомы благородного газа. При соприкосновении выделяется энергия, отрывающая электроны от атомов газа. Затем образуются вторичные электроны, которые тоже сталкиваются, порождая массу новых ионов и электронов. На скорость электронов по направлению к аноду влияет электрическое поле. По ходу этого процесса образуется электрический ток.

При столкновении энергия частиц теряется, запас ионизированных атомов газа подходит к концу. Когда заряженные частицы попадают в газоразрядный счетчик Гейгера, сопротивление трубки падает, что немедленно снижает напряжение средней точки деления. Затем сопротивление вновь растет - это влечет за собой восстановление напряжения. Импульс становится отрицательным. Прибор показывает импульсы, а мы можем их сосчитать, заодно оценив количество частиц.

Виды счётчиков Гейгера

По конструкции счетчики Гейгера бывают 2 видов: плоский и классический.

Классический

Сделан из тонкого гофрированного металла. За счет гофрирования трубка приобретает жесткость и устойчивость к внешнему воздействию, что препятствует ее деформации. Торцы трубки оснащены стеклянными или пластмассовыми изоляторами, в которых находятся колпачки для вывода к приборам.

На поверхность трубки нанесен лак (кроме выводов). Классический счетчик считается универсальным измерительным детектором для всех известных видов излучений. Особенно для γ и β.

Плоский

Чувствительные измерители для фиксации мягкого бета-излучения имеют другую конструкцию. Из-за малого количества бета-частиц, их корпус имеет плоскую форму. Есть окошко из слюды, слабо задерживающее β. Датчик БЕТА-2 - название одного из таких приборов. Свойства других плоских счетчиков зависят от материала.

Параметры и режимы работы счетчика Гейгера

Чтобы рассчитать чувствительность счетчика, оцените отношение количества микрорентген от образца к числу сигналов от этого излучения. Прибор не измеряет энергию частицы, поэтому не дает абсолютно точной оценки. Калибровка устройств происходит по образцам изотопных источников.

Также нужно смотреть на следующие параметры:

Рабочая зона, площадь входного окна

Характеристика площади индикатора, через которую проходят микрочастицы, зависит от его размеров. Чем шире площадь, тем большее число частиц будет поймано.

Рабочее напряжение

Напряжение должно соответствовать средним характеристикам. Сама характеристика работы - это плоская часть зависимости количества фиксированных импульсов от напряжения. Ее второе название - плато. В этом месте работа прибора достигает пиковой активности и именуется верхним пределом измерений. Значение - 400 Вольт.

Рабочая ширина

Рабочая ширина - разница между напряжением выхода на плоскость и напряжением искрового разряда. Значение - 100 Вольт.

Наклон

Величина измеряется в виде процента от количества импульсов на 1 вольт. Он показывает погрешность измерения (статистическую) в подсчете импульсов. Значение - 0,15 %.

Температура

Температура важна, поскольку счётчик часто приходится применять в сложных условиях. Например, в реакторах. Счетчики общего использования: от -50 до +70 С по Цельсию.

Рабочий ресурс

Ресурс характеризуется общим числом всех импульсов, зафиксированных до момента, когда показания прибора становятся некорректными. Если в устройстве есть органика для самогашения, количество импульсов составит один миллиард. Ресурс уместно подсчитывать только в состоянии рабочего напряжения. При хранении прибора расход останавливается.

Время восстановления

Это промежуток времени, за который устройство проводит электричество после реагирования на ионизирующую частицу. Существует верхний предел для частоты импульсов, ограничивающий интервал измерений. Значение - 10 микросекунд.

Из-за времени восстановления (его ещё называют мертвое время) прибор может подвести в решающий момент. Для предотвращения зашкаливания производители устанавливают свинцовые экраны.

Есть ли у счетчика фон

Фон измеряется в толстостенной свинцовой камере. Обычное значение - не более 2 импульсов за минуту.

Кто и где применяет дозиметры радиации?

В промышленных масштабах выпускают много модификаций счетчиков Гейгера-Мюллера. Их производство началось во времена СССР и продолжается сейчас, но уже в Российской Федерации.

Устройство применяют:

  • на объектах атомной промышленности;
  • в научных институтах;
  • в медицине;
  • в быту.

После аварии на Чернобыльской АЭС дозиметры покупают и рядовые граждане. Во всех приборах установлен счетчик Гейгера. Такие дозиметры оснащают одной или двумя трубками.

Можно ли сделать счетчик Гейгера своими руками?

Изготовить счетчик самостоятельно сложно. Нужен датчик излучения, а его купить смогут далеко не все. Сама схема счетчика давно известна - в учебниках физики, например, её тоже печатают. Однако воспроизвести устройство в домашних условиях сумеет только настоящий «левша».

Талантливые мастера-самоучки научились делать счетчику заменитель, который также способен замерять гамма- и бета-излучения с помощью люминесцентной лампы и лампы накаливания. Также используют трансформаторы от сломанной техники, трубка Гейгера, таймер, конденсатор, различные платы, резисторы.

Заключение

Диагностируя излучения, нужно учитывать собственный фон измерителя. Даже при наличии свинцовой защиты приличной толщины скорость регистрации не обнуляется. У этого явления есть объяснение: причина активности - космическое излучение, проникающее через толщи свинца. Над поверхностью Земли ежеминутно проносятся мюоны, которые регистрируются счетчиком с вероятностью 100%.

Есть и еще один источник фона - радиация, накопленная самим устройством. Поэтому по отношению к счётчику Гейгера тоже уместно говорить об износе. Чем больше радиации прибор накопил, тем ниже достоверность его данных.

Поделиться: