В большом количестве растениям необходимы микроэлементы. Макроэлементы и их значение для растений

Микроэлементы — это вещества, требующиеся для роста растений в минимальных количествах. Они обязательно должны быть в почве, но в очень маленьких количествах. Например, содержание азота в песчаном субстрате должно быть в пределах 120-150 мг/л, фосфора — 60 мг/л, калия — 150-200 мг/л, железа — 5-10 мг/л, цинка — 1 мг/л, а бора — 0,2-0,3 мг/л. В число микроэлементов, необходимых растению, включаются сера, железо, бор, молибден, медь, марганец, цинк, кобальт.

❖ Сера входит в растительные белки-аминокислоты: метионин, цистин, цистеин, ферменты, в горчичное и чесночное масло. Сера принимает участие в азотном, углеводном обмене, в процессе дыхания, синтезе жиров.

❖ Железо входит в состав окислительно-восстановительных ферментов, участвует в синтезе хлорофилла, процессах дыхания и обмена веществ.

❖ Бор участвует в реакциях углеводного, белкового, нуклеинового обмена. Он не реутилизируется (не используется повторно) в растении, поэтому от его недостатка страдают молодые листья. Недостаток бора влияет на формирование репродуктивных органов растения.

❖ Молибдену отводится исключительная роль в азотном питании. Он локализуется в молодых растущих органах, его меньше в стеблях и корнях, больше в хлоропластах.

❖ Роль меди определяется ее присутствием в составе медьсодержащих белков, ферментов. Медь принимает участие в процессе фотосинтеза, углеводного и белкового обмена.

❖ Физиологическая роль марганца определяется тем, что он входит в состав окислительно-восстановительных ферментов и принимает участие в процессах фотосинтеза, углеводного и азотного обмена. Марганец, в основном, находится в хлоропластах. Он повышает водоудерживающую способность тканей, снижает транспирацию, улучшает плодообразование.

❖ Цинк оказывает влияние на обмен веществ в растении, что обуславливает его содержание в более 30 ферментах.

❖ Кобальт входит в состав витамина В12, роль его проявляется в биологической фиксации молекулярного азота. Кобальт накапливается в плодах и цветках.

На каких почвах наиболее нужны микроэлементы?

Тяжелые суглистые и глинистые почвы с рН от 6 до 7 более богаты гумусом и содержат больше макро- и микроэлементов, находящихся в связанном состоянии, — недостаток микроэлементов на таких почвах наблюдается очень редко. Из песчаных почв макро- и микроэлементы вымываются, поэтому на них необходимо внесение удобрений во время вегетации растений. На торфяных почвах растения часто ощущают недостаток кальция, магния, меди, кобальта, молибдена и бора.

При известковании почвы необходимо дополнительно вносить медь, марганец, бор.

ЖЕЛЕЗО
Железо играет ведущую роль среди всех содержащихся в растениях тяжелых металлов.
Об этом свидетельствует уже тот факт, что оно содержится в тканях растений в количе-
ствах более значительных, чем другие металлы. Так содержание железа в листьях дос-
тигает сотых долей процента, за ним следует марганец, концентрация цинка выражается
уже в тысячных долях, а содержание меди не превышает десятитысячных процента .
Органические соединения, в состав которых входит железо, необходимы в биохи-
мических процессах, происходящих при дыхании и фотосинтезе. Это объясняется очень
высокой степенью их каталитических свойств. Неорганические соединения железа также
способны катализировать многие биохимические реакции, а в соединении с органиче-
скими веществами каталитические свойства железа возрастают во много раз.
Каталитическое действие железа связано с его способностью менять степень
окисления. Атом железа окисляется и восстанавливается сравнительно легко, поэтому
соединения железа являются переносчиками электронов в биохимических процессах. В
основе реакций, происходящих при дыхании растений лежит процесс переноса электро-
нов. Процесс этот осуществляется ферментами - дегидрогенезами и цитохромами, со-
держащими железо.
Железу принадлежит особая функция - непременное участие в биосинтезе хло-
рофилла. Поэтому любая причина, ограничивающая доступность железа для растений,
приводит к тяжелым заболеваниям, в частности к хлорозу.
При нарушении и ослаблении фотосинтеза и дыхания вследствие недостаточного
образования органических веществ, из которых строится организм растения, и дефицита
органических резервов, происходит общее расстройство обмена веществ. Поэтому при
остром недостатке железа неизбежно наступает гибель растений. У деревьев и кустар-
ников зеленая окраска верхушечных листьев исчезает полностью, они становятся почти
белыми, постепенно усыхают.
МАРГАНЕЦ
Роль марганца в обмене веществ у растений сходна с функциями магния и желе-
за. Марганец активирует многочисленные ферменты, особенно при фосфоролировании.
Поскольку марганец активизирует ферменты в растении, его недостаток сказывается на
многих процессах обмена веществ, в частности на синтезе углеводов и протеинов .
Признаки дефицита марганца у растений чаще всего наблюдаются на карбонат-
ных, сильноизвесткованных, а также на некоторых торфянистых и других почвах при рН
выше 6,5.
Недостаток марганца становится заметным сначала на молодых листьях по более
светлой зеленой окраске или по обесцвечиванию (хлорозу). В отличие от железистого
хлороза у однодольных в нижней части пластинки листьев появляются серые, серо-зе-
леные или бурые, постепенно сливающиеся пятна, часто с более темным окаймлением.
Признаки марганцевого голодания у двудольных такие же, как при недостатке железа,
только зеленые жилки обычно не так резко выделяются на пожелтевших тканях. Кроме
того, очень быстро появляются бурые некротические пятна. Листья отмирают даже бы-
стрее, чем при недостатке железа.
Марганцевая недостаточность у растений обостряется при низкой температуре и
высокой влажности. Видимо, в связи с этим озимые хлеба наиболее чувствительны к его
недостатку ранней весной.
Марганец участвует не только в фотосинтезе, но и в синтезе витамина С. При не-
достатке марганца понижается синтез органических веществ, уменьшается содержание
хлорофилла в растениях, и они заболевают хлорозом.
Симптомы марганцевой недостаточности у растений проявляются чаще всего на
карбонатных, торфянистых и других почвах с высоким содержанием органического ве-
щества. Недостаток марганца у растений проявляется в появлении на листьях мелких
хлоротичных пятен, располагающихся между жилками, которые остаются зелеными. У
злаков хлоротичные пятна имеют вид удлиненных полосок, а у свеклы они располага-
ются мелкими пятнами по листовой пластинке. При марганцевом голодании отмечается
также слабое развитие корневой системы растений. Наиболее чувствительными культу-
рами к недостатку марганца являются свекла сахарная, кормовая и столовая, овес, кар-
тофель, яблоня, черешня и малина. У плодовых культур наряду с хлорозным заболева-
нием листьев отмечается слабая облиственность деревьев, более раннее, чем обычно
опадание листьев, а при сильном марганцевом голодании - засыхание и отмирание вер-
хушек веток.
Физиологическая роль марганца в растениях связана, прежде всего, с его уча-
стием в окислительно-восстановительных процессах, проходящих в живой клетке, он
входит в ряд ферментных систем и принимает участие в фотосинтезе, дыхании, угле-
водном и белковом обмене и т.п..
Изучение эффективности марганцевых удобрений на различных почвах Украины пока-
зали, что урожай сахарной свеклы и содержание в ней сахара на их фоне был выше, бо-
лее высоким был при этом и урожай зерновых .

ЦИНК
Все культурные растения по отношению к цинку делятся на 3 группы:
- очень чувствительные (кукуруза, лен, хмель, виноград, плодовые);
- средне чувствительные (соя, фасоль, кормовые бобовые, горох, сахарная свекла,
подсолнечник, клевер, лук, картофель, капуста, огурцы, ягодники);
- слабо чувствительные (овес, пшеница, ячмень, рожь, морковь, рис, люцерна).
Недостаток цинка для растений чаще всего наблюдается на песчаных и карбо-
натных почвах. .Мало доступного цинка на торфяниках, а также на некоторых мало-
плодородных почвах. Недостаток цинка сильнее всего сказывается на образовании се-
мян, чем на развитии вегетативных органов. Симптомы цинковой недостаточности ши-
роко встречаются у различных плодовых культур (яблоня, черешня, японская слива,
орех, пекан, абрикос, авокадо, лимон, виноград). Особенно страдают от недостатка цин-
ка цитрусовые культуры.
Физиологическая роль цинка в растениях очень разнообразна. Он оказывает боль-
шое влияние на окислительно-восстановительные процессы, скорость которых при его
недостатке заметно снижается. Дефицит цинка ведет к нарушению процессов пре-
вращения углеводородов. Установлено, что при недостатке цинка в листьях и корнях то-
мата, цитрусовых и других культур, накапливаются фенольные соединения, фитосте-
ролы или лецитины, уменьшается содержание крахмала. .
Цинк входит в состав различных ферментов: карбоангидразы, триозофосфатде-
гидрогеназы, пероксидазы, оксидазы, полифенолоксидазы и др.
Обнаружено, что большие дозы фосфора и азота усиливают признаки недоста-
точности цинка у растений и что цинковые удобрения особенно необходимы при внесе-
нии высоких доз фосфора .
Значение цинка для роста растений тесно связано с его участием в азотном об-
мене. Дефицит цинка приводит к значительному накоплению растворимых азотных со-
единений - аминов и аминокислот, что нарушает синтез белка. Многие исследования
подтвердили, что содержание белка в растениях при недостатке цинка уменьшается.
Под влиянием цинка повышается синтез сахарозы, крахмала, общее содержание
углеводов и белковых веществ. Применение цинковых удобрений увеличивает содержа-
ние аскорбиновой кислоты, сухого вещества и хлорофилла. Цинковые удобрения повы-
шают засухо-, жаро- и холодоустойчивость растений .
Агрохимическими исследованиями установлена необходимость цинка для большого
количества видов высших растений. Его физиологическая роль в растениях много-
сторонняя. Цинк играет важную роль в окислительно-восстановительных процессах,
протекающих в растительном организме, он является составляющей частью ферментов,
непосредственно участвует в синтезе хлорофилла, влияет на углеводный обмен в рас-
тениях и способствует синтезу витаминов .
При цинковой недостаточности у растений появляются хлоротичные пятна на ли-
стьях, которые становятся бледно-зелеными, а у некоторых растений почти белыми. У
яблони, груши и ореха при недостатке цинка развивается так называемая розеточная
болезнь, выражающаяся в образовании на концах ветвей мелких листьев, которые рас-
полагаются в форме розетки . При цинковом голодании плодовых почек закладыва-
ется мало. Урожайность семечковых резко падает. Черешня еще более чувствительна к
недостатку цинка, чем яблоня и груша. Признаки цинкового голодания у черешни прояв-
ляются в появлении мелких, узких и деформированных листьев. Хлороз вначале появ-
ляется на краях листьев и постепенно распространяется к средней жилке листа. При
сильном развитии заболевания весь лист становится желтым или белым .
Из полевых культур цинковая недостаточность чаще всего проявляется на куку-
рузе в виде образования белого ростка или побеления верхушки. Показателем цинкового
голодания у бобовых (фасоль, соя) является наличие хлороза на листьях, иногда асим-
метрическое развитие листовой пластинки. Недостаток цинка для растений чаще всего
наблюдается на песчаных и супесчаных почвах с низким его содержанием, а также на
карбонатных и старопахотных почвах.
Применение цинковых удобрений повышает урожай всех полевых, овощных и
плодовых культур. При этом отмечается снижение пораженности растений грибковыми
заболеваниями, повышается сахаристость плодовых и ягодных культур .
БОР
Бор необходим для развития меристемы. Характерными признаками недостатка бора
являются отмирание точек роста, побегов и корней, нарушения в образовании и разви-
тии репродуктивных органов, разрушение сосудистой ткани и т.д. Недостаток бора очень
часто вызывает разрушение молодых растущих тканей.
Под влиянием бора улучшаются синтез и перемещение углеводов, особенно са-
харозы, из листьев к органам плодоношения и корням. Известно, что однодольные рас-
тения менее требовательны к бору, чем двудольные.
В литературе имеются данные о том, что бор улучшает передвижение ростовых
веществ и аскорбиновой кислоты из листьев к органам плодоношения. Установлено, что
цветки наиболее богаты бором по сравнению с другими частями растений. Он играет
существенную роль в процессах оплодотворения. При исключении его из питательной
среды пыльца растений плохо или даже совсем не прорастает. В этих случаях внесение
бора способствует лучшему прорастанию пыльцы, устраняет опадание завязей и усили-
вает развитие репродуктивных органов.
Бор играет важную роль в делении клеток и синтезе белков и является необходи-
мым компонентом клеточной оболочки. Исключительно важную функцию выполняет бор
в углеводном обмене. Недостаток его в питательной среде вызывает накопление саха-
ров в листьях растений. Это явление наблюдается у наиболее отзывчивых к борным
удобрениям культур. Бор способствует и лучшему использованию кальция в процессах
обмена веществ в растениях. Поэтому при недостатке бора растения не могут нор-
мально использо-вать кальций, хотя последний находится в почве в достаточном коли-
честве. Установлено, что размеры поглощения и накопления бора растениями возрас-
тают при повышении калия в почве.
При недостатке бора в питательной среде наблюдается нарушение анатомиче-
ского строения растений, например, слабое развитие ксилемы, раздробленность флоз-
мы основной паренхимы и дегенерация камбия. Корневая система развивается слабо,
так как бор играет значительную роль в ее развитии.
Недостаток бора ведет не только к понижению урожая сельскохозяйственных
культур, но и к ухудшению его качества. Следует отметить, что бор необходим расте-
ниям в течение всего вегетационного периода. Исключение бора из питательной среды в
любой фазе роста растения приводит к его заболеванию.
Внешние признаки борного голодания изменяются в зависимости от вида расте-
ний, однако, можно привести ряд общих признаков, которые характерны для большин-
ства высших растений . При этом наблюдается остановка роста корня и стебля, за-
тем появляется хлороз верхушечной точки роста, а позже при сильном борном голода-
нии следует полное его отмирание. Из пазух листьев развиваются боковые побеги, рас-
тение усиленно кустится, однако вновь образовавшиеся побеги, вскоре тоже останавли-
ваются в росте и повторяются все симптомы заболевания главного стебля. Особенно
сильно страдают от недостатка бора репродуктивные органы растений, при этом боль-
ное растение может совершенно не образовывать цветков или их образу-ется очень ма-
ло, отмечается пустоцвет опадание завязей.
В этой связи применение борсодержащих удобрений и улучшение обеспечения
растений этим элементом способствует не только увеличению урожайности, но и значи-
тельному повышению качества продукции. Улучшение борного питания ведет к повыше-
нию сахаристости сахарной свеклы, повышению содержания витамина С и сахаров
в плодово-ягодных культурах, томатах и т. д. .
Наиболее отзывчивы на борные удобрения сахарная и кормовая свекла, люцерна и кле-
вер (семенные посевы), овощные культуры, лен, подсолнечник, конопля, эфиромаслич-
ные и зерновые культуры.
МЕДЬ
Различные сельскохозяйственные культуры обладают неодинаковой чувствительностью
к недостатку меди. Растения можно расположить в следующем порядке по убывающей
отзывчивости на медь: пшеница, ячмень, овес, лен, кукуруза, морковь, свекла, лук, шпи-
нат, люцерна и белокочанная капуста. Средней отзывчивостью отличаются картофель,
томат, клевер красный, фасоль, соя. Сортовые особенности растений в пределах одного
и тоже вида имеют большое значение и существенно влияют на степень проявления
симптомов медной недостаточности. .
Недостаток меди часто совпадает с недостатком цинка, а на песчаных почвах
также с недостатком магния. Внесение высоких доз азотных удобрений усиливает по-
требность растений в меди и способствует обострению симптомов медной недостаточ-
ности.
Несмотря на то, что ряд других макро- и микроэлементов оказывает большое
влияние на скорость окислительно-восстановительных процессов, действие меди в этих
реакциях является специфическим, и она не может быть заменена каким-либо другим
элементом. Под влиянием меди повышается как активность пероксисилазы, так и сни-
жение активности синтетических центров и ведет к накоплению растворимых углеводов,
аминокислот и других продуктов распада сложных органических веществ. Медь является
составной частью ряда важнейших окислительных ферментов - полифенолксидазы, ас-
корбинатоксидазы, лактазы, дегидрогеназы и др. Все указанные ферменты осуществ-
ляют реакции окисления переносом электронов с субстрата к молекулярному кислороду,
который является акцептором электронов. В связи с этой функцией валентность меди в
окислительно-восстановительных реакциях изменяется от двухвалентного до однова-
лентного состояния и обратно.
Медь играет большую роль в процессах фотосинтеза. Под влиянием меди повы-
шается как активность пароксидазы, так и синтез белков, углеводов и жиров. При ее не-
достатке разрушение хлорофилла происходит значительно быстрее, чем при нормаль-
ном уровне питания растений медью, наблюдается понижение активности синтетических
процессов, что ведет к накоплению растворимых углеводов, аминокислот и других про-
дуктов распада сложных органических веществ .
При питании аммиачным азотом недостаток меди задерживает включение азота в
белок, пептоны и пептиды уже в первые часы после внесения азотной подкормки. Это
указывает на особо важную роль меди при применении аммиачного азота.
Характерной особенностью действия меди является то, что этот микроэлемент
повышает устойчивость растений против грибковых и бактериальных заболеваний. Медь
снижает заболевание зерновых культур различными видами головни, повышает устой-
чивость растений к бурой пятнистости и т.д. .
Признаки медной недостаточности проявляются чаще всего на торфянистых и на
кислых песчаных почвах. Симптомы заболевания растений при недостатке в почве меди
проявляются для зерновых в побелении и засыхании кончиков листовой пластинки. При
сильном недостатке меди растения начинают усиленно куститься, но в дальнейшем ко-
лошения не происходит и весь стебель постепенно засыхает.
Плодовые культуры при недостатке меди заболевают так называемой суховер-
шинностью или экзантемой. При этом на листовых пластинках слив и абрикосов между
жилками развивается отчетливый хлороз.
У томатов при недостатке меди отмечается замедление роста побегов, слабое
развитие корней, появление темной синевато-зеленой окраски листьев и их закручива-
ние, отсутствие образования цветков.
Все указанные выше заболевания сельскохозяйственных культур при применении
медных удобрений полностью устраняются, и продуктивность растений резко возрастает
.
МОЛИБДЕН
В настоящее время молибден по своему практическому значению выдвинут на одно из
первых мест среди других микроэлементов, так как этот элемент оказался весьма важ-
ным фактором в решении двух кардинальных проблем современного сельского хозяй-
ства - обеспечения растений азотом, а сельскохозяйственных животных белком .
В настоящее время установлена необходимость молибдена для роста растений
вообще. При недостатке молибдена в тканях растений накапливается большое количе-
ство нитратов и нарушается нормальный азотный обмен.
Молибден участвует в углеводородном обмене, в обмене фосфорных удобрений,
в синтезе витаминов и хлорофилла, влияет на интенсивность окислительно-восстанови-
тельных реакций. После обработки семян молибденом в листьях повышается содержа-
ние хлорофилла, каротина, фосфора и азота.
Установлено, что молибден входит в состав фермента нитратрадуктазы,
осуществляющей восстановление нитратов в растениях. Активность этого фермента зависит
от уровня обеспеченности растений молибденом, а так же от форм азота, применяемых
для их питания. При недостатке молибдена в питательной среде резко снижается актив-
ность нитратрадуктазы.
Внесение молибдена отдельно и совместно с бором в различные фазы роста го-
роха улучшало активность аскорбинатоксидазы, полифенолоксидазы и пароксидазы.
Наибольшее влияние на на активность аскорбинатоксидазы и полифенолоксидазы ока-
зывает молибден, а активность пароксидазы - бор на фоне молибдена.
Нитратредуктаза при участии молибдена катализирует восстановление нитратов
и нитритов, а нитритредуктаза также при участии молибдена восстанавливает нитраты
до аммиака. Этим объясняется положительное действие молибдена на повышение со-
держания белков в растениях.
Под влиянием молибдена в растениях увеличивается также содержание углево-
дов, каротина и аскорбиновой кислоты, повышается содержание белковых веществ.
Воздействием молибдена в растениях увеличивается содержание хлорофилла и повы-
шается интенсивность фотосинтеза.
Недостаток молибдена приводит к глубокому нарушению обмена веществ у рас-
тений. Симптомам молибденовой недостаточности предшествует в первую очередь из-
менение в азотном обмене у растений. При недостатке молибдена тормозится процесс
биологической редукции нитратов, замедляется синтез амидов, аминокислот и белков.
Все это приводит не только к снижению урожая, но и к резкому ухудшению его качества
.
Значение молибдена в жизни растений довольно разнообразно. Он активизирует
процессы связывания атмосферного азота клубеньковыми бактериями, способствует
синтезу и обмену белковых веществ в растениях. Наиболее чувствительны к недостатку
молибдена такие культуры как соя, зерновые бобовые культуры, клевер, многолетние
травы. Потребность растений в молибденовых удобрениях обычно возрастает на кислых
почвах, имеющих рН ниже 5,2.
Физиологическая роль молибдена связана с фиксацией атмосферного азота, ре-
дукцией нитратного азота в растениях, участием в окислительно-восстановительных
процессах, углеводном обмене, в синтезе хлорофилла и витаминов .
Недостаток молибдена в растениях проявляется в светло-зеленой окраске ли-
стьев, при этом сами листья становятся узкими, края их закручиваются внутрь и посте-
пенно отмирают, появляется крапчатость, жилки листа остают-ся светло-зелеными. Не-
достаток молибдена выражается, прежде всего, в появлении желто-зеленой окраски ли-
стьев, что является следствием ослабления фиксации азота атмосферы, стебли и че-
решки растений становятся красновато-бурыми .
Результаты опытов по изучению молибденовых удобрений показали, что при их
применении повышается урожай сельскохозяйственных культур и его качество, но осо-
бенно важна его роль в интенсификации симбиотической азотофиксации бобовыми куль-
турами и улучшении азотного питания последующих культур .
КОБАЛЬТ
Кобальт необходим для усиления азотофиксирующей деятельности клубеньковых бак-
терий Он входит в состав витамина В12, который имеется в клубеньках, оказывает за-
метное положительное действие на активность фермента гидрогеназы, а также увели-
чивает активность нитратредуктазы в клубеньках бобовых культур.
Этот микроэлемент влияет на накопление сахаров и жиров в растениях. Кобальт
благоприятно действует на процесс синтеза хлорофилла в листьях растений, уменьшает
его распад в темноте, увеличивает интенсивность дыхания, содержание аскорбиновой
кислоты в растениях. В результате внекорневых подкормок кобальтом в листьях расте-
ний повышается общее содержание нуклеиновых кислот. Кобальт оказывает заметное
положительное действие на активность фермента гидрогеназы, а также увеличивает ак-
тивность нитратредуктазы в клубеньках бобовых культур. Доказано положительное дей-
ствие кобальта на томаты, горох, гречиху, ячмень, овес и другие культуры. .
Кобальт принимает активное участие в реакциях окисления и восстановления,
стимулирует цикл Кребса и оказывает положительное влияние на дыхание и энергети-
ческий обмен, а также биосинтез белка нуклеиновых кислот. Благодаря своему положи-
тельному влиянию на обмен веществ, синтез белков, усвоение углеводов и т.п. он явля-
ется могучим стимулятором роста.
Положительное действие кобальта на сельскохозяйственные культуры проявля-
ется в усилении азотофиксации бобовыми, повышении содержания хлорофилла в ли-
стьях и витамина В12 в клубеньках. .
Применение кобальта в виде удобрений под полевые культуры повышало урожай
сахарной свеклы, зерновых культур и льна. При удобрении кобальтом винограда повы-
шался урожай его ягод, их сахаристость и снижалась кислотность.
В таблице 1 приведены обобщенные характеристики влияния микроэлементов на
функции растений, поведение их в почве при различных условиях, симптомы их дефи-
цита и его последствия.
Приведенный обзор физиологической роли микроэлементов для высших растений
свидетельствует о том, что недостаток почти каждого из них ведет к проявлению в той или иной степени хлороза у растений.
На засоленных почвах применение микроэлементов усиливает поглощение рас-
тениями питательных веществ из почвы и снижается поглощение хлора, повышается на-
копление сахаров и аскорбиновой кислоты, наблюдается некоторое увеличение содер-
жания хлорофилла и повышается продуктивность фотосинтеза. Кроме этого необходимо
отметить и фунгицидные свойства микроэлементов, подавление грибковых заболеваний
при обработке семян и при внесении их по вегетирующим растениям.

Микроэлементы являются активным веществом микроудобрений.

Показать все


Микроэлементы распространены в земной коре в концентрациях, не превышающих 0,1 %, а в живом веществе они обнаруживаются в количестве 10 -3 -10 -12 %. К группе микроэлементов относят металлы, неметаллы, галогены. Единственная их общая черта - низкое содержание в живых тканях.

Микроэлементы принимают самое активное участие во многих жизненных процессах, происходящих в растениях на молекулярном уровне. Путем воздействия на ферментную систему либо в непосредственной связи с биополимерами растений они стимулируют или ингибируют протекание физиологических процессов в тканях.

Для корректировки содержания микроэлементов в почве практикуют некорневые подкормки в течение вегетации, предпосевную обработку семян и посадочного материала, а также внесение в почву необходимых веществ в виде удобрений.

Физические и химические свойства

Микроэлементы различны по своим физическим и химическим свойствам. Среди них встречаются металлы ( , ), неметаллы (), галогены ().

Классификация микроэлементов

Химические элементы подразделяются на необходимые для растений и полезные им.

Необходимые

питательные элементы отвечают следующим требованиям:
  • без элемента не может завершиться жизненный цикл растения;
  • физиологические функции, выполняемые с участием конкретного элемента, не осуществляются при его замене на другой элемент;
  • элемент обязательно вовлекается в метаболизм растения.

Однако существует ряд условностей в использовании данного термина. Дело в том, что сложности с его применением возникают уже при сравнении необходимости того или иного элемента для жизни высших и низших растений и, тем более, животных и человека. Так, например, не доказана необходимость бора для некоторых грибов, спорна необходимость наличия кобальта для осуществления физиологических функций целого ряда растений. К бесспорно необходимым элементам относят , хлор, никель.

Полезные

- это питательные элементы, обладающие способностью стимулировать рост и развитие растений, но не в полной мере соответствующие трем требованиям, приведенным выше. К этой группе относятся и те элементы, которые необходимы только в определенных условиях и только для определенных видов растений. В настоящее время из микроэлементов полезными для растений считаются , селен, кремний, алюминий, и другие.

В настоящее время жизненно необходимыми для растений считаются только около десяти микроэлементов, еще несколько - необходимыми узкому кругу видов. Для остальных элементов известно, что они могут оказывать стимулирующее действие на растения, но их функции не установлены.

Некоторые физические и химические свойства микроэлементов , согласно данным:

Микроэлемент

Атомный номер

Атомная масса

Физическое состояние при нормальны условиях

10,81

неметалл

3700

2075

порошок черного цвета

50,94

металл

3400

1900

металл серебристого цвета

126,90

галоген

113,6

185,5

черно-фиолетовые кристаллы

54,94

металл

2095

1244

металл серебристого белого цвета

59,93

VIII

металл

2960

1494

твердый, тягучий, блестящий металл

63,54

металл

2600

1083

металл красного, в изломе розового цвета

65,39

металл

419,5

голубовато-серебристый металл

95,94

металл

4800

2620

светло-серый металл

Микроэлементы содержатся в небольших количествах практически повсеместно: в горных породах, почве, растениях и, естественно, в организме человека и животных.

Дерново-

подзолистая

1,5-6 ,6

0,08-0,38

0,1-47,9

0,05-5,0

20-67

0,12-20,0

40-7200

50,0-150

1,0-4,0

0,04-0 ,97

0,45-14,0

0,12-3,0

10-62

н.д.

0,5-4,4

н.д.

Чернозем

4-12

0,38-1,58

7-18

4,5-10,0

24-90

0,10-0,25

200-5600

1,0-75

0,7-8,6

0,02-0,33

2,6-13,0

1,10-2,2

37-125

н.д.

2,0-9,8

н.д.

Серозем

8,8-160,3

0,23-0,62

5-20

2,5-10,0

26-63

0,09-1,12

310-3800

1,5-125

0,7-2,0

0,03-0,15

н.д.

0,9-1,5

50-87

н.д.

1,3-38

н.д.

Каштановая

100-200

0,30-0,90

0,6-20

8,0-14,0

0,06-0,14

600-1270

1,5-75

0,2-2,0

0,09-0,62

0,1-6,0

н.д.

2,0-9,8

н.д.

Бурая

40,5

0,38-1,95

14-44,5

6,0-12,0

32,5-54,0

0,03-0,20

390-580

1,5-75

0,4-2,8

0,06-0,12

2,3-3,8

0,57-2,25

н.д.

0,3-5,3

н.д.

Роль в растении

Биохимические функции

Роль микроэлементов для растений многогранна. Они призваны улучшать обмен веществ, устранять функциональные нарушения, содействовать нормальному течению физиолого-биохимических процессов, влиять на процессы фотосинтеза и дыхания. Под действием микроэлементов возрастает устойчивость растений к бактериальным и грибковым заболеваниям, неблагоприятным факторам окружающей среды (засухе, повышению или понижению температуры, тяжелой зимовке и прочим).

Установлено, что микроэлементы входят в состав большого числа ферментов, играющих важную роль в жизни растений. Все биохимические реакции синтеза, распада, обмена органических веществ протекают только при участии ферментов.

,

в составе микроудобрений повышают активность ферментов пероксидазы и полифенолоксидазы как в семядолях, так и в корнях гороха, но не изменяют их активности в проростках. При этом, и у гороха, и у кукурузы пероксидазная окислительная система преобладает над полифенолоксидазной.

Роль в растении и главные функции некоторых необходимых питательные микроэлементов, согласно данным:

Микроэлемент

В какие компоненты входит

Процессы, в которых участвует

Фосфоглюконаты

Метаболизм и перенос углеводов,

Синтез флавоноидов,

Синтез нуклеиновых кислот,

Утилизация фосфата,образование полифенолов.

Кофермент кобамид

Симбиотическая фиксация азота (возможно и у не клубеньковых растений), стимулирование окислительно-восстановительных реакций при синтезе хлорофилла и протеинов.

Разнообразные оксиданты, пластоцианины, ценилоплазмин.

Окисление, фотосинтез, метаболизм протеинов и углеводов,

Возможно, участвует в симбиотической фиксации азота и окислительно-восстановительных реакциях.

Тирозин и его производные у покрытосеменных и водорослей

Многие ферментные системы

Фотопродукция кислорода в хлоропластах и косвенное участие в восстановлении NO 3 -

Нитратредуктаза, нитрогеназа, оксидазы и молибденоферридоксин

Фиксация азота, восстановление NO 3 -

Окислительно-восстановительные реакции

Порфины, гемопротеины

Метаболизм липидов, фотосинтез в зеленых водорослях и, возможно, участие в фиксации N 2

Ангидразы, дегидрогеназы, протеиназы и пептидазы

Метаболизм углеводов и белков

Недостаток (дефицит) микроэлементов в растениях

При недостаточном поступлении какого-либо микроэлемента из числа необходимых питательных элементов рост растения отклоняется от нормы или прекращается вовсе, а дальнейшее развитие растения, в особенности его метаболические циклы, нарушаются.

При недостатке микроэлементов активность многих ферментов резко снижается. Например, установлено, что при недостатке меди резко падает активность ферментов, в состав которых входит медь, а именно, полифенолоксидазы и аскорбатоксидазы.

Симптомы недостаточности (дефицита) трудно свести к одному знаменателю, но, все же, они характерны для конкретных микроэлементов. Наиболее часто наблюдается хлороз.

Визуальная симптоматика очень важна для диагностики недостаточности, но нарушения метаболических процессов и, как следствие, потеря биомассы продукции могут наступать прежде, чем симптомы недостаточности будут заметны. Для улучшения методов диагностики дефицита микроэлементов ряд авторов предлагает биохимические индикаторы. К сожалению, широкое применение этого способа ограничено в связи с большой изменчивостью энзиматической активности и трудностью определения данного показателя.

Наиболее широко используются тесты - анализ почв и растений. Но и в этом случае неподвижные формы микроэлементов, находящиеся в старых частях растения, могут исказить данные. Однако анализ растительных тканей успешно используют для установления дефицита микроэлементов путем сравнения с содержанием этих соединений в тех же тканях нормальных растений, того же возраста и в тех же органах.

При устранении дефицита микроэлементов при помощи удобрений следует учитывать тот факт, что подобная процедура является эффективной, только если содержание элемента в почве либо его доступность достаточно низкие.

В любом случае, формирование дефицита микроэлементов в растениях является результатом сложного взаимодействия нескольких факторов. Многочисленные наблюдения доказали, что свойства и генезис почв - это главные причины, вызывающие дефицит микроэлементов в растении. Обычно недостаток микроэлементов связан с почвами высокой кислотности (светлыми песчанистыми) и щелочными (известковистыми) почвами с неблагоприятным водным режимом, а также с избытком фосфатов, азота, кальция, оксидов железа и марганца.

Симптомы недостатка микроэлементов питания у сельскохозяйственных культур, согласно данным:

Элемент

Симптомы

Чувствительные к ультуры

Хлороз и покоричневение молодых листьев,

Погибшие верхушечные почки,

Нарушение развития цветов,

Поражение сердцевины растений и корней,

Мультипликация при делении клеток

Капуста и близкие виды,

Сельдерей,

Виноград,

Фруктовые деревья (груши и яблони)

Меланизм,

Белые скрученные макушки,

Ослабление образования метелок,

Нарушение одревеснения

Злаки (овес),

Подсолнечник,

Пятна хлороза,

Некроз молодых листьев,

Ослабленный тургор

Злаки (овес),

Фруктовые деревья (яблони, вишни, цитрусовые)

Хлороз края листовой пластинки,

Нарушение свертывания цветной капусты,

Огненные края и деформация листьев,

Разрушение зародышевых тканей.

Капуста, близкие виды,

Межжилковый хлороз (у однодольных),

Остановка роста,

Розетчатость листьев у деревьев,

Фиолетово-красные точки на листьях

Зерновые (кукуруза),

Виноград,

Фруктовые деревья (цитрусы).

Избыток микроэлементов в растениях

Метаболические нарушения в растениях вызывают не только недостаток, но и избыток элементов питания. Растения более устойчивы к повышенной, чем к пониженной концентрации микроэлементов.

Главные реакции, связанные с токсичным действием микроэлементов:

  • изменение проницаемости клеточных мембран;
  • реакции тиольных групп с катионами;
  • конкуренция с жизненно важными метаболитами;
  • большое сродство с фосфатными группами и активными центрами в АДФ и АТФ;
  • захват в молекулах позиций, занимаемых жизненно важными группами, такими, как фосфат и нитрат.

Оценка влияния токсичных концентраций элементов на растение достаточно сложна, поскольку зависит от множества факторов. К числу наиболее важных относят пропорции, в которых ионы и их соединения присутствуют в почвенном растворе.

Например, токсичность арсената и селената заметно понижается при избытке сульфата и фосфата. Металлоорганические соединения могут быть более токсичными, чем катионы того же элемента. Кислородные анионы элементов, как правило, более ядовиты, чем их простые катионы.

Наиболее токсичными для высших растений являются , никель , свинец , .

Видимые симптомы токсичности изменяются в зависимости от вида растения, но имеются и общие, неспецифические симптомы фитотоксичности: хлорозные и бурые точки на листовых пластинках и их краях, а также коричневые чахлые корни кораллоподобной конфигурации.

Симптомы токсичности микроэлементов у распространенных с/х культур, согласно данным:

Элемент

Симптомы

Чувствительные культуры

Хлороз краев и концов листьев,

Бурые точки на листья,

Загнивание ростовых точек,

Скручивание и отмирание старых листьев

Картофель,

Помидоры,

Подсолнечник,

Белые края и кончики листьев,

Уродливые кончики корней

Картофель,

Помидоры,

Подсолнечник,

Темно-зеленые листья,

Корни толстые, короткие или похожие на колючую проволоку,

Угнетение образования побегов

Саженцы цитрусовых, Гладиолусы

Хлороз и некротические поражения у старых листьев,

Буровато-черные или красные некротические пятна,

Накопление частиц оксида марганца в клетках эпидермиса,

Засохшие кончики листьев,

Чахлые корни

Картофель,

Пожелтение или покоричневение листьев,

Угнетение роста корней,

Угнетение кущения

Хлороз и некроз концов листьев,

Межжилковый хлороз молодых листьев,

Задержка роста у растения в целом,

Корни повреждены, похожи на колючую проволоку.

Содержание микроэлементов в различных соединениях

Микроудобрения - это удобрения, в которых действующим веществом является один (или несколько) микроэлементов. Они могут быть представлены как в виде минеральных форм, так и органоминеральными соединениями. Микроудобрения классифицируют по основному элементу, который они содержат (марганцевые, цинковые, медьсодержащие и прочее).

Микроэлементы могут входить и в состав макроудобрений в виде примесей. Определенное количество микроэлементов привносится в почву и в составе органических удобрений. На практике в качестве микроудобрений часто используют отходы различных производств, обогащенные микроэлементами.

Способы применения микроудобрений и удобрений, содержащих микроэлементы

Микроудобрения применяют для внесения в почву, некорневых подкормок и предпосадочной обработки семян. Дозы микроудобрений малы. Это требует высокой точности дозирования и равномерности внесения.

Внесение в почву

применяется для радикального повышения содержания микроэлементов в почве на протяжении всего вегетационного периода. При этом способе могут наблюдаться отрицательные эффекты:
  • образование трудно растворимых форм микроэлементов,
  • вымывание микроэлементов за пределы корнеобитаемого слоя.

Не рекомендуется вносить в почву дорогостоящие виды микроудобрений, особенно осенью. В данном случае лучше использовать различные макроудобрения, модифицированные микроэлементами, труднодоступные промышленные отходы и удобрения пролонгированного действия.

Предпосевная обработка семян

- самый распространенный способ использования микроудобрений. Этот способ технологичен и позволяет сочетать обработку семян с их посевом. Именно такая форма обработки способствует оптимизации питания растения микроэлементами на самых ранних стадиях развития. Часто обработку семян микроэлементами сочетают с применением пленкообразующих веществ, регуляторов роста и протравителей. Этот процесс носит название инкрустации семян.

Некорневые подкормки

рекомендуется проводить при непосредственном обнаружении дефицита микроэлемента. Этот способ позволяет корректировать питание растений микроэлементами, избегая негативных последствий внесения микроудобрений в почву.

1. РОЛЬ МИКРОЭЛЕМЕНТОВ В ЖИЗНИ РАСТЕНИЙ

Микроэлементами называют химические элементы, необходимые для нормальной жизнедеятельности растений и животных, и используемые растениями и животными в микро количествах по сравнению с основными компонентами питания. Однако биологическая роль микроэлементов велика. Всем без исключения растениям для построения ферментных систем - биокатализаторов - необходимы микроэлементы, среди которых наибольшее значение имеют железо, марганец, цинк, бор, молибден, кобальт и др. Ряд ученых называют их "элементами жизни", как бы подчеркивая, что при отсутствии указанных элементов жизнь растений и животных становится невозможной. Недостаток микроэлементов в почве не приводит к гибели растений, но является причиной снижения скорости и согласованности протекания процессов, ответственных за развитие организма. В конечном итоге растения не реализуют своих возможностей и дают низкий и не всегда качественный урожай .

Микроэлементы не могут быть заменены другими веществами и их недостаток обязательно должен быть восполнен с учетом формы, в которой они будут находиться в почве. Растения могут использовать микроэлементы только в водорастворимой форме (подвижной форме микроэлемента), а неподвижная форма может быть использована растением после протекания сложных биохимических процессов с участием гуминовых кислот почвы. В большинстве случаев эти процессы протекают очень медленно и при обильном поливе грунта значительная часть образующихся подвижных форм микроэлементов вымывается. Все микроэлементы жизни, корме бора, входят в состав тех или иных ферментов. Бор не входит в состав ферментов, а локализуется в субстрате и участвует в перемещении сахаров через мембраны, благодаря образованию углеводно-боратного комплекса.

Главная роль микроэлементов в повышении качества и количества урожая заключается в следующем:

Большинство микроэлементов являются активными катализаторами, ускоряющими целый ряд биохимических реакций. Микроэлементы своими замечательными свойствами в ничтожных количествах способны оказывать сильнейшее действие на ход жизненных процессов и очень напоминают ферменты. Совместное влияние микроэлементов значительно усиливает их каталитические свойства. В ряде случаев только композиции микроэлементов могут восстановить нормальное развитие растений или регенерировать гемоглобин при анемиях .

Однако сведение роли микроэлементов только к их каталитическому действию неверно. Микроэлементы оказывают большое влияние на биоколлоиды и влияют на направленность биохимических процессов. Так марганец регулирует соотношение двух - и трехвалентного железа в клетке. Соотношение железо-марганец должно быть больше двух. Медь защищает от разрушения хлорофилл и способствует увеличению дозы азота и фосфора примерно в два раза. Бор и марганец повышают фотосинтез после подмораживания растений. Неблагоприятное соотношение азота, фосфора, калия может вызвать болезни растений, которое излечивается микроудобрениями.

Из анализа результатов отечественных и зарубежных специалистов по исследованию эффективности применения микроэлементов в сельском хозяйстве вытекает следующее:

ЖЕЛЕЗО.

Железо играет ведущую роль среди всех содержащихся в растениях тяжелых металлов. Об этом свидетельствует уже тот факт, что оно содержится в тканях растений в количествах более значительных, чем другие металлы. Так содержание железа в листьях достигает сотых долей процента, за ним следует марганец, концентрация цинка выражается уже в тысячных долях, а содержание меди не превышает десятитысячных процента .

Органические соединения, в состав которых входит железо, необходимы в биохимических процессах, происходящих при дыхании и фотосинтезе. Это объясняется очень высокой степенью их каталитических свойств. Неорганические соединения железа также способны катализировать многие биохимические реакции, а в соединении с органическими веществами каталитические свойства железа возрастают во много раз.

Каталитическое действие железа связано с его способностью менять степень окисления. Атом железа окисляется и восстанавливается сравнительно легко, поэтому соединения железа являются переносчиками электронов в биохимических процессах. В основе реакций, происходящих при дыхании растений лежит процесс переноса электронов. Процесс этот осуществляется ферментами - дегидрогенезами и цитохромами, содержащими железо.

Железу принадлежит особая функция - непременное участие в биосинтезе хлорофилла. Поэтому любая причина, ограничивающая доступность железа для растений, приводит к тяжелым заболеваниям, в частности к хлорозу.

При нарушении и ослаблении фотосинтеза и дыхания вследствие недостаточного образования органических веществ, из которых строится организм растения, и дефицита органических резервов, происходит общее расстройство обмена веществ. Поэтому при остром недостатке железа неизбежно наступает гибель растений. У деревьев и кустарников зеленая окраска верхушечных листьев исчезает полностью, они становятся почти белыми, постепенно усыхают.

МАРГАНЕЦ.

Роль марганца в обмене веществ у растений сходна с функциями магния и железа. Марганец активирует многочисленные ферменты, особенно при фосфоролировании. Поскольку марганец активизирует ферменты в растении, его недостаток сказывается на многих процессах обмена веществ, в частности на синтезе углеводов и протеинов .

Признаки дефицита марганца у растений чаще всего наблюдаются на карбонатных, сильноизвесткованных, а также на некоторых торфянистых и других почвах при рН выше 6,5.

Недостаток марганца становится заметным сначала на молодых листьях по более светлой зеленой окраске или по обесцвечиванию (хлорозу). В отличие от железистого хлороза у однодольных в нижней части пластинки листьев появляются серые, серо-зеленые или бурые, постепенно сливающиеся пятна, часто с более темным окаймлением. Признаки марганцевого голодания у двудольных такие же, как при недостатке железа, только зеленые жилки обычно не так резко выделяются на пожелтевших тканях. Кроме того, очень быстро появляются бурые некротические пятна. Листья отмирают даже быстрее, чем при недостатке железа.

Марганцевая недостаточность у растений обостряется при низкой температуре и высокой влажности . Видимо, в связи с этим озимые хлеба наиболее чувствительны к его недостатку ранней весной.

Марганец участвует не только в фотосинтезе, но и в синтезе витамина С. При недостатке марганца понижается синтез органических веществ, уменьшается содержание хлорофилла в растениях, и они заболевают хлорозом.

Симптомы марганцевой недостаточности у растений проявляются чаще всего на карбонатных, торфянистых и других почвах с высоким содержанием органического вещества. Недостаток марганца у растений проявляется в появлении на листьях мелких хлоротичных пятен, располагающихся между жилками, которые остаются зелеными. У злаков хлоротичные пятна имеют вид удлиненных полосок, а у свеклы они располагаются мелкими пятнами по листовой пластинке. При марганцевом голодании отмечается также слабое развитие корневой системы растений. Наиболее чувствительными культурами к недостатку марганца являются свекла сахарная, кормовая и столовая, овес, картофель, яблоня, черешня и малина. У плодовых культур наряду с хлорозным заболеванием листьев отмечается слабая облиственность деревьев, более раннее, чем обычно опадание листьев, а при сильном марганцевом голодании - засыхание и отмирание верхушек веток.

Физиологическая роль марганца в растениях связана, прежде всего, с его участием в окислительно-восстановительных процессах, проходящих в живой клетке, он входит в ряд ферментных систем и принимает участие в фотосинтезе, дыхании, углеводном и белковом обмене и т. п..

Изучение эффективности марганцевых удобрений на различных почвах Украины показали, что урожай сахарной свеклы и содержание в ней сахара на их фоне был выше, более высоким был при этом и урожай зерновых .

ЦИНК.

Все культурные растения по отношению к цинку делятся на 3 группы:
- очень чувствительные (кукуруза, лен, хмель, виноград , плодовые);
- средне чувствительные (соя, фасоль, кормовые бобовые, горох, сахарная свекла, подсолнечник, клевер, лук, картофель, капуста, огурцы, ягодники);
- слабо чувствительные (овес, пшеница, ячмень, рожь, морковь, рис, люцерна).

Недостаток цинка для растений чаще всего наблюдается на песчаных и карбонатных почвах. .Мало доступного цинка на торфяниках, а также на некоторых малоплодородных почвах. Недостаток цинка сильнее всего сказывается на образовании семян, чем на развитии вегетативных органов. Симптомы цинковой недостаточности широко встречаются у различных плодовых культур (яблоня, черешня, японская слива, орех, пекан, абрикос , авокадо, лимон, виноград). Особенно страдают от недостатка цинка цитрусовые культуры.

Физиологическая роль цинка в растениях очень разнообразна. Он оказывает большое влияние на окислительно-восстановительные процессы, скорость которых при его недостатке заметно снижается. Дефицит цинка ведет к нарушению процессов превращения углеводородов. Установлено, что при недостатке цинка в листьях и корнях томата, цитрусовых и других культур, накапливаются фенольные соединения, фитостеролы или лецитины, уменьшается содержание крахмала. .

Цинк входит в состав различных ферментов: карбоангидразы, триозофосфатдегидрогеназы, пероксидазы, оксидазы, полифенолоксидазы и др.

Обнаружено, что большие дозы фосфора и азота усиливают признаки недостаточности цинка у растений и что цинковые удобрения особенно необходимы при внесении высоких доз фосфора .

Значение цинка для роста растений тесно связано с его участием в азотном обмене. Дефицит цинка приводит к значительному накоплению растворимых азотных соединений - аминов и аминокислот, что нарушает синтез белка. Многие исследования подтвердили, что содержание белка в растениях при недостатке цинка уменьшается.

Под влиянием цинка повышается синтез сахарозы, крахмала, общее содержание углеводов и белковых веществ. Применение цинковых удобрений увеличивает содержание аскорбиновой кислоты, сухого вещества и хлорофилла. Цинковые удобрения повышают засухо-, жаро - и холодоустойчивость растений .

Агрохимическими исследованиями установлена необходимость цинка для большого количества видов высших растений. Его физиологическая роль в растениях многосторонняя. Цинк играет важную роль в окислительно-восстановительных процессах, протекающих в растительном организме, он является составляющей частью ферментов, непосредственно участвует в синтезе хлорофилла, влияет на углеводный обмен в растениях и способствует синтезу витаминов .

При цинковой недостаточности у растений появляются хлоротичные пятна на листьях, которые становятся бледно-зелеными, а у некоторых растений почти белыми. У яблони, груши и ореха при недостатке цинка развивается так называемая розеточная болезнь, выражающаяся в образовании на концах ветвей мелких листьев, которые располагаются в форме розетки . При цинковом голодании плодовых почек закладывается мало. Урожайность семечковых резко падает. Черешня еще более чувствительна к недостатку цинка, чем яблоня и груша. Признаки цинкового голодания у черешни проявляются в появлении мелких, узких и деформированных листьев. Хлороз вначале появляется на краях листьев и постепенно распространяется к средней жилке листа. При сильном развитии заболевания весь лист становится желтым или белым .

Из полевых культур цинковая недостаточность чаще всего проявляется на кукурузе в виде образования белого ростка или побеления верхушки. Показателем цинкового голодания у бобовых (фасоль, соя) является наличие хлороза на листьях, иногда асимметрическое развитие листовой пластинки. Недостаток цинка для растений чаще всего наблюдается на песчаных и супесчаных почвах с низким его содержанием, а также на карбонатных и старопахотных почвах.

Применение цинковых удобрений повышает урожай всех полевых, овощных и плодовых культур. При этом отмечается снижение пораженности растений грибковыми заболеваниями, повышается сахаристость плодовых и ягодных культур .

Бор необходим для развития меристемы. Характерными признаками недостатка бора являются отмирание точек роста, побегов и корней, нарушения в образовании и развитии репродуктивных органов, разрушение сосудистой ткани и т. д. Недостаток бора очень часто вызывает разрушение молодых растущих тканей.

Под влиянием бора улучшаются синтез и перемещение углеводов, особенно сахарозы, из листьев к органам плодоношения и корням. Известно, что однодольные растения менее требовательны к бору, чем двудольные.

В литературе имеются данные о том, что бор улучшает передвижение ростовых веществ и аскорбиновой кислоты из листьев к органам плодоношения. Установлено, что цветки наиболее богаты бором по сравнению с другими частями растений. Он играет существенную роль в процессах оплодотворения. При исключении его из питательной среды пыльца растений плохо или даже совсем не прорастает. В этих случаях внесение бора способствует лучшему прорастанию пыльцы, устраняет опадание завязей и усиливает развитие репродуктивных органов.

Бор играет важную роль в делении клеток и синтезе белков и является необходимым компонентом клеточной оболочки. Исключительно важную функцию выполняет бор в углеводном обмене. Недостаток его в питательной среде вызывает накопление сахаров в листьях растений. Это явление наблюдается у наиболее отзывчивых к борным удобрениям культур. Бор способствует и лучшему использованию кальция в процессах обмена веществ в растениях. Поэтому при недостатке бора растения не могут нормально использо-вать кальций, хотя последний находится в почве в достаточном количестве. Установлено, что размеры поглощения и накопления бора растениями возрастают при повышении калия в почве.

При недостатке бора в питательной среде наблюдается нарушение анатомического строения растений, например, слабое развитие ксилемы, раздробленность флозмы основной паренхимы и дегенерация камбия. Корневая система развивается слабо, так как бор играет значительную роль в ее развитии.

Недостаток бора ведет не только к понижению урожая сельскохозяйственных культур, но и к ухудшению его качества. Следует отметить, что бор необходим растениям в течение всего вегетационного периода. Исключение бора из питательной среды в любой фазе роста растения приводит к его заболеванию.

Внешние признаки борного голодания изменяются в зависимости от вида растений, однако, можно привести ряд общих признаков, которые характерны для большинства высших растений . При этом наблюдается остановка роста корня и стебля, затем появляется хлороз верхушечной точки роста, а позже при сильном борном голодании следует полное его отмирание. Из пазух листьев развиваются боковые побеги, растение усиленно кустится, однако вновь образовавшиеся побеги, вскоре тоже останавливаются в росте и повторяются все симптомы заболевания главного стебля. Особенно сильно страдают от недостатка бора репродуктивные органы растений, при этом больное растение может совершенно не образовывать цветков или их образу-ется очень мало, отмечается пустоцвет опадание завязей.

В этой связи применение борсодержащих удобрений и улучшение обеспечения растений этим элементом способствует не только увеличению урожайности, но и значительному повышению качества продукции. Улучшение борного питания ведет к повышению сахаристости сахарной свеклы, повышению содержания витамина С и сахаров в плодово-ягодных культурах, томатах и т. д. .
Наиболее отзывчивы на борные удобрения сахарная и кормовая свекла, люцерна и клевер (семенные посевы), овощные культуры, лен, подсолнечник, конопля, эфиромасличные и зерновые культуры.

МЕДЬ.

Различные сельскохозяйственные культуры обладают неодинаковой чувствительностью к недостатку меди. Растения можно расположить в следующем порядке по убывающей отзывчивости на медь: пшеница, ячмень, овес, лен, кукуруза, морковь, свекла, лук, шпинат, люцерна и белокочанная капуста. Средней отзывчивостью отличаются картофель, томат, клевер красный, фасоль, соя. Сортовые особенности растений в пределах одного и тоже вида имеют большое значение и существенно влияют на степень проявления симптомов медной недостаточности. .

Недостаток меди часто совпадает с недостатком цинка, а на песчаных почвах также с недостатком магния. Внесение высоких доз азотных удобрений усиливает потребность растений в меди и способствует обострению симптомов медной недостаточности.

Несмотря на то, что ряд других макро - и микроэлементов оказывает большое влияние на скорость окислительно-восстановительных процессов, действие меди в этих реакциях является специфическим, и она не может быть заменена каким-либо другим элементом. Под влиянием меди повышается как активность пероксисилазы, так и снижение активности синтетических центров и ведет к накоплению растворимых углеводов, аминокислот и других продуктов распада сложных органических веществ. Медь является составной частью ряда важнейших окислительных ферментов - полифенолксидазы, аскорбинатоксидазы, лактазы, дегидрогеназы и др. Все указанные ферменты осуществляют реакции окисления переносом электронов с субстрата к молекулярному кислороду, который является акцептором электронов. В связи с этой функцией валентность меди в окислительно-восстановительных реакциях изменяется от двухвалентного до одновалентного состояния и обратно.

Медь играет большую роль в процессах фотосинтеза. Под влиянием меди повышается как активность пароксидазы, так и синтез белков, углеводов и жиров. При ее недостатке разрушение хлорофилла происходит значительно быстрее, чем при нормальном уровне питания растений медью, наблюдается понижение активности синтетических процессов, что ведет к накоплению растворимых углеводов, аминокислот и других продуктов распада сложных органических веществ .

При питании аммиачным азотом недостаток меди задерживает включение азота в белок, пептоны и пептиды уже в первые часы после внесения азотной подкормки. Это указывает на особо важную роль меди при применении аммиачного азота.

Характерной особенностью действия меди является то, что этот микроэлемент повышает устойчивость растений против грибковых и бактериальных заболеваний. Медь снижает заболевание зерновых культур различными видами головни, повышает устойчивость растений к бурой пятнистости и т. д. .

Признаки медной недостаточности проявляются чаще всего на торфянистых и на кислых песчаных почвах. Симптомы заболевания растений при недостатке в почве меди проявляются для зерновых в побелении и засыхании кончиков листовой пластинки. При сильном недостатке меди растения начинают усиленно куститься, но в дальнейшем колошения не происходит и весь стебель постепенно засыхает.

Плодовые культуры при недостатке меди заболевают так называемой суховершинностью или экзантемой. При этом на листовых пластинках слив и абрикосов между жилками развивается отчетливый хлороз.

У томатов при недостатке меди отмечается замедление роста побегов, слабое развитие корней, появление темной синевато-зеленой окраски листьев и их закручивание, отсутствие образования цветков.

Все указанные выше заболевания сельскохозяйственных культур при применении медных удобрений полностью устраняются, и продуктивность растений резко возрастает .

МОЛИБДЕН.

В настоящее время молибден по своему практическому значению выдвинут на одно из первых мест среди других микроэлементов, так как этот элемент оказался весьма важным фактором в решении двух кардинальных проблем современного сельского хозяйства - обеспечения растений азотом, а сельскохозяйственных животных белком .

В настоящее время установлена необходимость молибдена для роста растений вообще. При недостатке молибдена в тканях растений накапливается большое количество нитратов и нарушается нормальный азотный обмен.

Молибден участвует в углеводородном обмене, в обмене фосфорных удобрений, в синтезе витаминов и хлорофилла, влияет на интенсивность окислительно-восстановительных реакций. После обработки семян молибденом в листьях повышается содержание хлорофилла, каротина, фосфора и азота.

Установлено, что молибден входит в состав фермента нитратрадуктазы, осуществляющей восстановление нитратов в растениях. Активность этого фермента зависит от уровня обеспеченности растений молибденом, а так же от форм азота, применяемых для их питания. При недостатке молибдена в питательной среде резко снижается активность нитратрадуктазы.

Внесение молибдена отдельно и совместно с бором в различные фазы роста гороха улучшало активность аскорбинатоксидазы, полифенолоксидазы и пароксидазы. Наибольшее влияние на на активность аскорбинатоксидазы и полифенолоксидазы оказывает молибден, а активность пароксидазы - бор на фоне молибдена.

Нитратредуктаза при участии молибдена катализирует восстановление нитратов и нитритов, а нитритредуктаза также при участии молибдена восстанавливает нитраты до аммиака . Этим объясняется положительное действие молибдена на повышение содержания белков в растениях.

Под влиянием молибдена в растениях увеличивается также содержание углеводов, каротина и аскорбиновой кислоты, повышается содержание белковых веществ. Воздействием молибдена в растениях увеличивается содержание хлорофилла и повышается интенсивность фотосинтеза.

Недостаток молибдена приводит к глубокому нарушению обмена веществ у растений. Симптомам молибденовой недостаточности предшествует в первую очередь изменение в азотном обмене у растений. При недостатке молибдена тормозится процесс биологической редукции нитратов, замедляется синтез амидов, аминокислот и белков. Все это приводит не только к снижению урожая, но и к резкому ухудшению его качества .

Значение молибдена в жизни растений довольно разнообразно. Он активизирует процессы связывания атмосферного азота клубеньковыми бактериями, способствует синтезу и обмену белковых веществ в растениях. Наиболее чувствительны к недостатку молибдена такие культуры как соя, зерновые бобовые культуры, клевер, многолетние травы. Потребность растений в молибденовых удобрениях обычно возрастает на кислых почвах, имеющих рН ниже 5,2.

Физиологическая роль молибдена связана с фиксацией атмосферного азота, редукцией нитратного азота в растениях, участием в окислительно-восстановительных процессах, углеводном обмене, в синтезе хлорофилла и витаминов .

Недостаток молибдена в растениях проявляется в светло-зеленой окраске листьев, при этом сами листья становятся узкими, края их закручиваются внутрь и постепенно отмирают, появляется крапчатость, жилки листа остают-ся светло-зелеными. Недостаток молибдена выражается, прежде всего, в появлении желто-зеленой окраски листьев, что является следствием ослабления фиксации азота атмосферы, стебли и черешки растений становятся красновато-бурыми .

Результаты опытов по изучению молибденовых удобрений показали, что при их применении повышается урожай сельскохозяйственных культур и его качество, но особенно важна его роль в интенсификации симбиотической азотофиксации бобовыми культурами и улучшении азотного питания последующих культур .

КОБАЛЬТ.

Кобальт необходим для усиления азотофиксирующей деятельности клубеньковых бактерий Он входит в состав витамина В12, который имеется в клубеньках, оказывает заметное положительное действие на активность фермента гидрогеназы, а также увеличивает активность нитратредуктазы в клубеньках бобовых культур.

Этот микроэлемент влияет на накопление сахаров и жиров в растениях. Кобальт благоприятно действует на процесс синтеза хлорофилла в листьях растений, уменьшает его распад в темноте, увеличивает интенсивность дыхания, содержание аскорбиновой кислоты в растениях. В результате внекорневых подкормок кобальтом в листьях растений повышается общее содержание нуклеиновых кислот. Кобальт оказывает заметное положительное действие на активность фермента гидрогеназы, а также увеличивает активность нитратредуктазы в клубеньках бобовых культур. Доказано положительное действие кобальта на томаты, горох, гречиху, ячмень, овес и другие культуры. .

Кобальт принимает активное участие в реакциях окисления и восстановления, стимулирует цикл Кребса и оказывает положительное влияние на дыхание и энергетический обмен, а также биосинтез белка нуклеиновых кислот. Благодаря своему положительному влиянию на обмен веществ, синтез белков, усвоение углеводов и т. п. он является могучим стимулятором роста.

Положительное действие кобальта на сельскохозяйственные культуры проявляется в усилении азотофиксации бобовыми, повышении содержания хлорофилла в листьях и витамина В12 в клубеньках. .

Применение кобальта в виде удобрений под полевые культуры повышало урожай сахарной свеклы, зерновых культур и льна. При удобрении кобальтом винограда повышался урожай его ягод, их сахаристость и снижалась кислотность.

В таблице 1 приведены обобщенные характеристики влияния микроэлементов на функции растений, поведение их в почве при различных условиях, симптомы их дефицита и его последствия.

Приведенный обзор физиологической роли микроэлементов для высших растений свидетельствует о том, что недостаток почти каждого из них ведет к проявлению в той или иной степени хлороза у растений.

На засоленных почвах применение микроэлементов усиливает поглощение растениями питательных веществ из почвы и снижается поглощение хлора, повышается накопление сахаров и аскорбиновой кислоты, наблюдается некоторое увеличение содержания хлорофилла и повышается продуктивность фотосинтеза. Кроме этого необходимо отметить и фунгицидные свойства микроэлементов, подавление грибковых заболеваний при обработке семян и при внесении их по вегетирующим растениям.

Горячие Мини Продажа Бумаги Формирователь Резак Цветок Бумага Удар Ремесло…

46.79 руб.

Бесплатная доставка

(4.80) | Заказы (55)

Способы применения и дозы микроэлементов для подкормки овощей

Все мы наслышаны о роли удобрений в жизни растений, но почему-то за таковые принимаются только такие макроэлементы, как азот, фосфор, калий, а микроэлементы остаются за порогом внимания. Давайте же расширим кругозор и рассмотрим «набор» элементов питания более подробно.

Большинство микроэлементов (бор, молибден, марганец, медь, цинк и др.) входят в состав ферментов и способствуют повышению активности биохимических процессов, протекающих в растениях. Действие микроэлементов очень многообразно: они предохраняют растения от болезней, усиливают процессы оплодотворения, образования плодов и усвоения питательных веществ, участвуют в передвижении углеводов. Рассмотрим основные микроэлементы более детально.

Бор

Играет большую и многообразную роль в биохимических и физиологических процессах в растении. При недостатке бора опок углеводов из листьев и других частей растений к репродуктивным органам затруднен, в результате цветки опадают, увядает верхушечная точка роста, завязавшиеся семена оказываются щуплыми. Борное голодание уменьшает сопротивляемость болезням (у цветной капусты, свеклы, плодовых культур развивается гниль «сердечка»).

Признаком недостатка бора является то, что молодые листья теряют зеленую окраску, грубеют, затем темнеют и отмирают. У помидоров, цветной капусты, огурцов и других овощных растений недостаток бора вызывает скручивание и огрубение молодых листьев, отмирание точек роста, опадение цветков и завязей.

Борные удобрения наиболее эффективны на нейтральных дерново-подзолистых почвах. Борный суперфосфат содержит от 0,2 до 0,4 % бора, используется также борная кислота (17 %) – сухой порошок белого цвета, хорошо растворимый в воде.

Молибден

Входит в состав фермента нитратредуктазы, который участвует в восстановлении нитратного азота. Этот микроэлемент также способствует фиксации молекулярного азота. Помимо этого улучшает условия кальциевого питания бобовых и других растений. При недостатке молибдена цветная капуста приобретает желто-синий или желто-зеленый цвет, сильно грубеет. Листовые пластинки срастаются в черенки. У бобовых растений без молибдена замедляется рост и появляется светло-зеленая окраска листьев.

Из молибденовых удобрений применяют молибденовокислый аммоний (52 % Мо).

Марганец

Принимает участие в окислительно-восстановительных процессах и взаимодействует с железом в ферментных системах. При участии марганца, накапливающегося в растении, закисные формы железа переходят в окисные, что устраняет их токсичность. Марганец участвует в синтезе витаминов (особенно С), усиливает накопление сахара в корнеплодах, белков -в зерновых культурах. Недостаток марганца наблюдается на нейтральных и щелочных почвах.

На дерново-подзолистых почвах марганцевые удобрения применять не стоит, также как и на сильнокислых почвах, на которых может проявляться даже токсическое действие этого элемента на отдельные культуры. Однако на карбонатных и избыточно известкованных грунтах они оказывают положительное действие. Применяют марганцевые удобрения в виде марганцевого суперфосфата (2-3 %) и сульфата марганца (21-22 %).

Медь

Роль меди в растениях, прежде всего, связана с окислительными процессами. Она входит в состав таких важных ферментов, как полинолоксидазы, аскорбинокседазы и др. Медь оказывает стабилизирующее влияние на хлорофилл, что усиливает фотосинтез. Медь влияет на углеводный и белковый обмены.

При недостатке меди у растений развивается хлороз листьев, белеют их кончики, а у салата, шпината, гороха и свеклы по окраинам листьев образуется желто-серая полоса. Происходит повеление и засыхание кончиков листьев.

Медные удобрения чаще всего используют на торфяно-болотных почвах. Наиболее широко применяется гранулированный хлористый калий с медью (1 %). Применяется также медный купорос (24 %) – голубой порошок, который растворим в горячей воде.

Цинк

Входит в состав ряда ферментов и усиливает их активность. Недостаток цинка нарушает липоидный и углеводный обмены. В растениях содержится меньше сахарозы и крахмала и больше – редуцирующих Сахаров.

Цинк оказывает большое воздействие на скорость окислительных процессов в растениях, оплодотворение и развитие зародыша, положительно влияет на содержание витаминов С и Р, стимулирует образование у растений ростовых веществ (ауксинов). Особенно хорошо реагируют на цинк кукуруза и плодовые культуры.

При недостатке цинка также снижается содержание фосфорорганических соединений и замедляется процесс образования хлорофилла, в результате появляются пятнистый хлороз, желтуха. Повышенная чувствительность к недостатку цинка отмечена у кукурузы, сои, фасоли и других культур.

Цинковые удобрения представлены в основном сернокислым цинком (23 %). Их применяют на песчаных, супесчаных и других легких почвах.

Способы применения

Недостаток микроэлементов, которые необходимы для нормального роста и развития растений, на практике обычно восполняют путем смачивания семенного материала в растворах, содержащих эти элементы.

Способы применения и дозы микроэлементов (г/л) приведены в таблице.

Микроудобрения

Обработка семян перед посевом

Внекорневая подкормка

Внесение в почву

Сернокислый цинк

Борная кислота

0,05

Медный купорос

0,05

0,03

Молибдат аммония

0,03

На заметку: предшественники огородных культур

Строя планы на предстоящие посевы и посадки в огороде, необходимо обязательно учесть севооборот – научно обоснованное чередование культур в пространстве и во времени. Соблюдение этого правила поможет избежать многих неприятностей, которые, в первую очередь, связаны с накоплением в почве патогенов, семян сорняков и вредителей. В правильном чередовании растений поможет приведенная ниже таблица.

Предшествующая культура

Что хорошо посеять, посадить

Лук, капуста, огурцы, корнеплоды

Зеленные овощи и зелень

Картофель, лук, томаты, бобовые, морковь, свекла

Капуста

Томаты, огурцы, картофель, бобовые, капуста

Лук репчатый

Зелень, картофель, капуста, бобовые, томаты

Морковь

Капуста, бобовые, свекла, репа, томаты

Огурцы

Кабачки, тыква, капуста, патиссоны, лук, бобовые, свекла, морковь

Картофель

Капуста, огурцы, бобовые, томаты

Чеснок

Огурцы, тыква, картофель, томаты, лук, капуста

Свекла

Томаты, огурцы, лук, морковь, бобовые, картофель

Редис, репа, репка, брюква

Капуста, томаты, свекла, морковь

Бобовые

Зерновые, чеснок, морковь, зелень, лук, свекла

Клубника

Огурцы, редис, картофель, капуста, морковь, свекла

Зелень и пасленовые овощи

Капуста, свекла, морковь, картофель, зерновые

Тыква, патиссон, кабачки

Перед тем как начинать пахать или перекапывать огород, не пожалейте часок лишнего времени и уберите на участке мусор, а главное – растительные остатки. Если вы этого не сделаете, то просто будете запахивать в землю готовые рассадники множества болезней и вредителей. А простая уборка позволит избавиться от множества проблем в будущем.

На заметку

Из минеральных удобрений особое внимание при хранении необходимо уделять селитрам – аммиачной и калийной. Эти виды удобрений кроме того что очень гигроскопичны, так еще и по-жаро- и взрывоопасны. Не допускайте их смешения с легковоспламеняющимися материалами, такими как солома, опилки, торф, ветошь. А то в результате самосогревания удобрений могут произойти воспламенение и пожар.

Поделиться: