Устройство для импульсной очистки поверхностей нагрева жаротрубных и газотрубных котлов. Опыт внедрения газо-импульсной очистки на энерготехнологических котлах и котлах промышленной и коммунальной энергетики

Изобретение относится к теплоэнергетике, в частности к устройству для ударно-импульсной очистки поверхностей нагрева котлов от зольных отложений и может быть использовано в любом технологическом процессе, где есть необходимость в генераторе ударных волн. Изобретение направлено на создание генератора ударных волн с улучшенными технико-эксплуатационными характеристиками, в том числе на повышение надежности и эффективности в работе. Устройство для ударно-импульсной очистки котлов включает ударную трубу, камеру взрыва и затвор для ввода взрывчатого вещества и его инициирования. Камера взрыва выполнена из двухслойного цилиндра, сопряженного при помощи резьбового соединения с ударной трубой и затвором, в котором установлены механизм подрыва и устройства, блокирующие подрыв во время перезарядки и любой нештатной ситуации, включая ошибку оператора. Блокиратор выполнен в виде пластины с отверстием, подвижно закрепленной внутри затвора с помощью упругого элемента и фиксатора. 2 з.п. ф-лы, 2 ил.

Изобретение относится к теплоэнергетике, а именно к средствам очистки поверхностей нагрева энергетических и водогрейных котельных агрегатов от наружных рыхлых отложений. Устройство также может быть использовано в технологических установках металлургической, химической и других отраслях промышленности. Известно устройство для очистки поверхностей нагрева котлов, содержащее камеру сгорания с выхлопным соплом и взрывную камеру, расположенную смежно с камерой сгорания коаксиально выхлопному соплу. Во взрывной камере установлена перегородка, образующая со смежной стенкой топливную камеру, к которой подсоединен патрубок подачи топлива. Стенка и перегородка выполнены перфорированными. Все устройство заключено в герметичный кожух, к которому подведены патрубки для подачи воздуха. Полость кожуха соединена с камерой сгорания воздушными соплами, а с взрывной камерой - посредством отверстий, расположенных в зоне перегородки . Недостатком данного устройства являются его низкие эксплуатационные качества. Очень трудно обеспечить условия, в которых режим горения топлива в одной камере приводил бы к взрыву этого топлива в другой камере и обеспечивал стабильность и повторяемость процесса. Другой недостаток данного устройства - отсутствие мобильности, ввиду того, что данное устройство жестко подсоединено к топливной системе и к самому котлу. При этом не исключается возможность самопроизвольного затекания горючей смеси и взрыва ее внутри газоходов котла. Накопление золы и других твердых частиц в ударных трубах устройства в перерывах между рабочими циклами отрицательно сказываются на его эффективности, так как в период пуска эти частицы с большой скоростью "выстреливают" на обрабатываемую поверхность, вызывая ее постепенный износ. Наиболее близким устройством того же назначения к заявляемому по совокупности признаков является устройство для очистки поверхностей нагрева от зольных отложений, содержащее камеру сгорания с гнездом для порохового заряда, ударную трубу, затвор для ввода взрывчатого вещества и устройство инициирования, состоящее из последовательно расположенных электромагнита, иглы и капсюля . К причинам, препятствующим достижению указанного ниже технического результата при использовании известного устройства, принятого за прототип, относится отсутствие в этом устройстве конструктивных элементов и технико-эксплуатационных характеристик, обеспечивающих безопасность при проведении работ поп очистке поверхности нагрева котла. Так, в нем не исключен самопроизвольный подрыв взрывчатого вещества при недозакрытом затворе и во время перезарядки. В данном устройстве также не исключена случайность взрыва при подаче ложного сигнала на электромагнит во всех режимах его работы. Перечисленные недостатки идут вразрез с общепринятыми требованиями, являющимися необходимым условием для безопасного проведения работ. К недостатку следует также отнести то, что в данном устройстве не предусмотрена смена ударной трубы при переходе от одной конструкции котла к другой. Изобретение направлено на устранение вышеперечисленных недостатков путем изменения конструкции устройства и улучшения его технико-эксплуатационных характеристик при высокой эффективности и надежности в работе. Указанная задача решается за счет достижения технического результата при осуществлении изобретения, заключающегося в существенном улучшении конструкции устройства и выполнении всех необходимых требований по технике безопасности. Указанный технический результат при осуществлении изобретения достигается тем, что устройство для ударно-импульсной очистки поверхностей нагрева котлов, включающее ударную трубу, камеру взрыва, затвор ввода взрывчатого вещества и механизм подрыва, состоящий из капсюля, бойка и электромагнита с блоком управления, выполнено конструктивно новым способом. Так, его камера взрыва выполнена из двух соосных цилиндров, вставленных друг в друга с натягом, при этом внешний цилиндр сопряжен при помощи резьбовых соединений с ударной трубой и затвором и заключен в свою очередь в полую обечайку. Внутри затвора в данном устройстве установлено механическое предохранительное устройство, обеспечивающее автоматическое стопорение после каждого выстрела и блокиратор, препятствующий перемещению бойка затвора во время его открытия и перезарядки. К тому же в резьбовом соединении со стороны затвора на сопрягаемых поверхностях выполнены продольные пазы, обеспечивающие прямолинейный вход затвора внутрь внешнего цилиндра камеры взрыва. Технический результат достигается также тем, что вышеупомянутая обечайка данного устройства, охватывающая внешний цилиндр камеры взрыва, жестко скреплена с затвором и на ней установлены ручки и выполнены направляющие пазы для перемещения и фиксации затвора относительно камеры взрыва. При этом на поверхности внешнего цилиндра камеры взрыва установлены ограничители перемещения полой обечайки, а в последней выполнены окна для ввода взрывчатого вещества в камеру взрыва. Технический результат достигается также тем, что вышеупомянутый блокиратор устройства выполнен в виде прямоугольной пластины со сквозным отверстием в ее плоскости, которая подвижно закреплена в пазу затвора перпендикулярно его оси при помощи упругого элемента и фиксатора. При этом, боек механизма подрыва выполнен из двух цилиндров, диаметр меньшего из которых меньше диаметра отверстия пластины блокиратора. Изложенная выше совокупность признаков обеспечивает достижение указанного технического результата, чем обуславливается причинно-следственная связь между признаками и техническим результатом и существенность признаков формулы изобретения. Проведенный заявителем анализ уровня техники, включающий поиск информации по патентным и научно-техническим источникам, и изучение источников, содержащих сведения об аналогах заявленного изобретения, позволяет утверждать, что заявителем не обнаружен аналог, характеризующийся признаками, идентичными всем существенным признакам заявленного изобретения, а сравнение с прототипом, наиболее приближающимся к заявляемому, позволило выявить совокупность существенных отличительных признаков в заявляемом объекте в плане технического результата, которые изложены в формуле изобретения. Следовательно, заявленное изобретение соответствует требованию "новизна" по действующему законодательству. Для проверки соответствия заявленного изобретения требованию "изобретательский уровень" заявитель провел сопоставительный анализ известных решений с целью выявления признаков заявляемого изобретения, результаты которого показывают, что заявляемое изобретение не следует для специалиста явным образом из известного уровня техники, т.е. соответствует требованию "изобретательский уровень" по действующему законодательству. На фиг. 1 представлено устройство для ударно-импульсной очистки поверхностей котлов, продольный разрез; На фиг. 2 показано поперечное сечение устройства по А-А на фиг. 1 (условно увеличено). Сведения, подтверждающие возможность осуществления изобретения с получением вышеуказанного технического результата, заключаются в следующем. Заявленное устройство для ударно-импульсной очистки поверхностей нагрева котлов содержит: ударную трубу (фиг. 1), выполненную в виде быстросъемного ствола, камеру взрыва 2, затвор 3 для ввода взрывчатого вещества 4 в камеру взрыва 2, капсюль 5, боек 6 для пробития капсюля 5, электромагнит 7 для запуска бойка 6, соосные цилиндры 8, 9 камеры взрыва 2 с резьбовыми соединениями 10, 11, обечайку 12, предохранитель 13, блокиратор-пластину 14 со сквозным отверстием 15, упругий элемент 16, фиксатор 17, ручки 18; при этом на цилиндре 9 камеры взрыва 2 установлены упоры 19, а в полой обечайке 12 выполнены направляющие пазы 20 и окно 21 (фиг. 2). В резьбовом соединении 11 (фиг. 1), соединяющем камеру 2 с затвором 3, на поверхности затвора 3 (фиг. 2) и на поверхности цилиндра 9 выполнены соответственно продольные пазы 22, 23, обеспечивающие поступательное перемещение затвора 3 до соприкосновения с камерой взрыва 2. Следует отметить, что предохранитель 13 (фиг. 1) в данном устройстве может быть выполнен известным способом и поэтому на чертеже представлен условно. Однако непременным условием его конструктивного исполнения является то, что предохранитель 13 четко улавливает боек 6 после отскока от камеры взрыва 2 и надежно фиксирует его в исходном положении до подачи сигнала на запуск электромагнита 7. Работа устройства осуществляется следующим образом. После снятия устройства с предохранителя 13 (фиг. 1) подается напряжение на электромагнит 7, который выталкивает боек 6. Ускорясь, боек 6 производит удар по капсюлю 5, в результате чего взрывчатое вещество 4 взрывается, образуя повышенное давление в камере взрыва 2. Образовавшаяся ударная волна посредством ударной трубы 1 направляется на обрабатываемую поверхность котла (механизм крепления устройства к котлу условно не показан). После многократного отражения от поверхностей нагрева котла она постепенно затухает. При этом боек 6 под действием пружины возвращается в свое первоначальное положение и фиксируется предохранителем 13. После нажатия стопора (на чертеже условно не показан) на ручке 18 оператор поворачивает затвор 3 вокруг его оси до соприкосновения упора 19 с направляющими пазами 20 и отводит затвор 3 в его крайнее открытое положение. При этом освободившийся фиксатор 17 под действием упругого элемента 16 перемещается вместе с пластиной 14 в свое верхнее положение. Отверстие 15 пластины 14 смещается и перекрывает канал, по которому боек 6 движется к капсюлю 5. После повторного ввода взрывчатого вещества 4 в камеру взрыва 2, обечайка 12 вновь поступательно перемещается до соприкосновения с камерой взрыва 2 и поворачивается вокруг своей оси до упора. Причем фиксатор 17 с помощью резьбового соединения вновь утапливается в свое нижнее положение, открывая отверстие 15 для бойка 6. На этом подготовка к очередному пуску заканчивается и весь цикл вновь повторяется при снятии устройства с предохранителя. Такая двойная защита обеспечивает полную гарантию от любой случайности, в том числе и от небрежности оператора. Так, например, устройство не сработает, если во время открытия или закрытия затвора оператор случайно подает сигнал на электромагнит. Оно также не сработает при не полностью закрытом затворе и при неснятом предохранителе. Предлагаемая конструкция устройства отвечает всем требованиям, которые предъявляет служба безопасности при производстве взрывных работ. Устройств не требует ни специальных приборов, ни дорогостоящих материалов для своей реализации и весьма просто в изготовлении. А его мобильность и простота монтажа на котельный агрегат позволяет существенно снизить затраты на его наладку и во время всего периода его эксплуатации. Таким образом, вышеприведенные сведения свидетельствуют о выполнении при использовании данного изобретения следующей совокупности условий: средство, воплощающее заявленное изобретение при его осуществлении, предназначено для использовании в промышленности, а именно при ударно-импульсной очистке поверхности нагрева котлов с помощью устройства новой конструкции с улучшенными техническими и эксплуатационными характеристиками; для заявленного изобретения в том виде, как оно охарактеризовано в независимом пункте нижеизложенной формулы изобретения, подтверждена возможность его осуществления с помощью вышеуказанных в заявке способа и известных до даты приоритета средств и методов; средство, воплощающее заявленное изобретение при его осуществлении, способно обеспечить достижение усматриваемого заявителем технического результата. Источники информации: 1. Авторское свидетельство N 1499084 СССР, МКИ 4 F 28 G 7/00, 1989. 2. Патент N 2031312 РФ МКИ 6 F 28 G 11/00, 1995.

В процессе эксплуатации котла для очистки экранных поверхностей нагрева применяют паровую и пароводяную об­дувку, а также вибрационную очистку, а для конвективных поверхностей нагрева - паро­вую и пароводяную обдувку, вибрационную, дробевую и акустическую очистку или самооб­дувку.

Наибольшее распространение имеют паровая обдувка и дробевая очистка. Для ширм и вертикальных пароперегревателей наиболее эффективной является вибрацион­ная очистка. Радикальным является приме­нение самообдувающихся поверхностей на­грева с малым диаметром и шагом труб, при которых поверхности нагрева непрерывно поддерживаются чистыми.

Паровая обдувка. Очистка по­верхностей нагрева от загрязнений может быть осуществлена за счет динамического воздействия струй воды, пара, пароводяной смеси или воздуха. Действенность струй определяется их дальнобойностью.

Наибольшей дальнобойностью и термическим эффектом, способствующим растрескиванию шлака, обладает струя воды. Однако обдувка водой может вызвать переохлаждение труб экранов и повреждение их металла. Воздушная струя имеет резкое снижение скорости, создает небольшой динамический напор и эффективна только при давлении не менее 4 МПа.

Применение воздушной обдувки затруднено необходимостью установки компрессоров высокой производительности и давления.

Наиболее распространена обдувка с применением насыщенного и перегретого пара. Струя пара имеет небольшую дальнобойность, но при давлении более 3 МПа ее действие до­статочно эффективно. При давлении пара 4 МПа перед обдувочным аппаратом динамический напор струи на расстоянии примерно 3 м от сопла состав­ляет более 2000 Па.

Для удаления отложений с поверхности нагрева динамический напор струи должен составлять примерно 200-250 Па для рыхлых золовых отложений, 400-500 Па для уплот­ненных золовых отложений, 2000 Па для оплавленных шлаковых отложений.

Обдувочные аппараты. Конструктивная схема обдувочного аппарата приведена на рис. 101.

Рис. 101. Обдувочный аппарат:

1, 5 – электродвигатели; 2 – обдувочная труба; 3, 6 – редуктора;

4 – каретка; 7 – монорельс; 8 – звездочка; 9 – бесконечная цепь;

10 – запорный клапан; 11 – тяга с клином; 12 – рычаг;

13 – неподвижный паропровод; 14 – стержень

Обдувочный аппарат включает в себя:

· электродвигатель 1, укрепленный на каретке 4;

· редуктор 3, предназначенный для вращения обдувочной трубы 2;

· электродвигатель 5 и редуктор 6, укрепленные на монорельсе 7, предназначенные для поступательного движения обдувочной трубы 2;

· механизм поступательного перемещения обдувочной трубы, состоящий из каретки 4, которая перемещается по полкам монорельса 7, звездочек 8 и бесконечной цепи 9;


· запорный клапан 10, автоматически открывающий пар в обдувочную трубу после ее выхода на позицию обдувки; механизм, управляющий запорным клапаном 10 и состоящий из тяги с клином 11 и рычага 12.

Обдувочная труба соединена при помощи сальника с неподвижным паропроводом 13, подводящим к ней пар от запорного клапана. Двутавровый монорельс 7 несет на себе все указанные механизмы, а сам крепится к каркасу котла. При получении импульса от предыдущего обдувочного аппарата, закончившего свою работу, пускатель включает электродвигатели 1 и 5. При этом включается сигнальная лампа, расположенная на щите программного управления обдувкой. Каретка 4, перемещаясь по монорельсу, вводит обдувочную трубу 2 в газоход. Когда обдувочная труба выходит на позицию обдувки, стержень 14, воздействуя на рычаг, увлекает при помощи тяги клин 11, который через толкатель отжимает запорный паровой клапан, открывающий доступ пара в обдувочную трубу. Пар из обдувочной трубы выходит через сопла, обдувая поверхность нагрева.

При поступательно-вращательном движении трубы 2 обдувка производится по винтовой линии. После полного ввода обдувочной трубы внутрь газохода штифт, установленный на приводной цепи 9, воздействуя на концевые выключатели электродвигателя 5, переключает прибор на обратный ход. При этом обдувка поверхности нагрева производится так же, как и при движении обдувочной трубы внутрь газохода.

До того как сопловая головка будет выведена из газохода, стержень 14, воздействуя через рычаг 12 на клин 11, выведет его в исходное положение, и запорный паровой клапан под действием пружины закроется, прекратив доступ пара в обдувочную трубу.

С возвратом обдувочной трубы в исходное положение штифт, установленный на приводной цепи 9, воздействуя на концевые выключатели, отключает электродвигатели 1 и 5, и следующий по схеме прибор получает импульс на включение.

Зона действия обдувочного аппарата до 2,5 м, а глубина захода в топку до 8 м. На стенах топки обдувочные аппараты размещаются так, чтобы зона их действия охватывала всю поверхность экранов.

Обдувочные аппараты для конвективных поверхностей нагрева имеют многосопловую трубу, не выдвигаются из газохода и только вращаются. Число сопл, расположенных с двух сторон обдувочной трубы, соответствует числу труб в ряду обдуваемой поверхности нагрева.

Для регенеративных воздухоподогрева­телей применяются обдувочные аппараты с качающейся трубой. Пар или вода подводит­ся к обдувочной трубе, и вытекающая из сопла струя очищает пластины воздухоподо­гревателя. Обдувочная труба поворачивается на определенный угол так, что струя попадает во все ячейки вращающегося ротора воздухо­подогревателя. Для очистки регенеративного воздухоподогревателя парогенераторов, ра­ботающих на твердом топливе, в качестве обдувочного агента применяется пар, а паро­генераторов, работающих на мазуте - щелоч­ная вода. Вода хорошо промывает и нейтра­лизует сернокислотные соединения, имею­щиеся в отложениях.

Пароводяная обдувка. Рабо­чим агентом обдувочного аппарата служит вода парогенератора или питательная вода.

Аппарат представляет собою сопла, установленные между трубами экранов. Вода в сопла подается под давлением, и в результате падения давления при прохождении через сопла из нее образуется пароводяная струя, направленная на противоположно расположенные участки экранов, фестонов, ширм. Высокая плотность пароводяной смеси и наличие недоиспарившейся в струе воды оказывают эффективное разрушающее действие на отложения шлака, который удаляется в нижнюю часть топки.

Вибрационная очистка. Вибрационная очистка основана на том, что пpи колебании труб с большой частотой нарушается сцепление отложений с металлом поверхности нагрева. Наиболее эффективна вибрационная очистка свободно подвешенных вертикальных труб, ширм и пароперегрева­телей. Для вибрационной очистки преимуще­ственно применяют электромагнитные вибра­торы (рис. 102).

Трубы пароперегревателей и ширм прикрепляются к тяге, которая выходит за пределы обмуровки и соединяется с вибра­тором. Тяга охлаждается водой, и место ее прохода через обмуровку уплотнено. Электро­магнитный вибратор состоит из корпуса с яко­рем и каркаса с сердечником, закрепленных пружинами. Вибрация очищаемых труб осуществляется за счет ударов по тяге с частотой 3000 ударов в минуту, амплитуда колебаний 0,3-0,4 мм.

Дробеочистка. Дробеочистка при­меняется для очистки конвективных поверх­ностей нагрева при наличии на них уплотнен­ных и связанных отложений. Очистка проис­ходит в результате использования кинетиче­ской энергии падающих на очищаемые поверх­ности чугунных дробинок диаметром 3-5 мм. В верхней части конвективной шахты парогенератора помещаются разбра­сыватели, которые равномерно распределяют дробь по сечению газохода. При падении дробь сбивает

Рис. 102. Вибрационное устройство для очи­стки вертикальных труб:

а - вид сбоку; б - сопряжение виброштанги с обогреваемыми

трубами, вид сверху; 1 - виб­ратор; 2 - плита; 3 - трос;

4 - противовес; 5 - виброштанга; 6 - уплотнение прохода

штан­ги через обмуровку; 7 - труба

осевшую на трубах золу, а за­тем вместе с ней собирается в бункерах, расположенных под шахтой. Из бункеров дробь вместе с золой попадает в сборный бункер, из которого питатель подает их в трубопровод, где масса золы с дробью подхватывается воздухом и выносится в дробеуловитель, из которого дробь по рукавам вновь подается в разбрасыватели, а воздух вместе с части­цами золы направляется в циклон, где про­исходит их разделение. Из циклона воздух сбрасывается в газоход перед дымососом, а зола, осевшая в циклоне, удаляется в систе­му золоудаления котельной установ­ки.

Транспорт дроби осуществляется по вса­сывающей или нагнетательной схеме. При всасываемой схеме разрежение в системе создается паровым эжектором или вакуум-насосом. При нагне­тательной схеме транспортирующий воздух подается в инжектор от компрессора. Для транспорта дроби необходима скорость воз­духа 40 – 50 м/с.

В последнее время дробеочистка практически не используется. Это связано с деформацией поверхностей нагрева и относительно низкой эффективностью.

На трубах поверхностей нагрева могут оседать также частицы в твердом состоянии, загрязняя их наружную поверхность как с лобовой, так и с тыльной стороны. Эти загрязнения могут иметь рыхлую структуру или прочно связываться с материалом труб, образуя трудноудалимые отложения.

Отложения на трубах уменьшают коэффициент теплопередачи (так как отложения имеют низкую теплопроводность и действуют подобно тепловой изоляции) и снижают эффективность отдачи теплоты, вызывая рост температуры уходящих газов. Подобно шлакованию, загрязнение поверхностей нагрева ведет к увеличению сопротивления газового трак та и ограничению тяги.

Рыхлые отложения образуются преимущественно с тыльной стороны труб. Для их уменьшения применяют шахматную компоновку тесно расположенных труб.

Связанные сыпучие отложения появляются при сжигании некоторых видов топлива, содержащих значительное количество соединений щелочноземельных (Са, Мg) или щелочных металлов (сланцы, фрезерный торф, угли Канско-Ачинского бассейна и некоторые другие), а также при сжигании мазутов. Они могут образоваться в результате сульфатизации, например, оксида Са:

СаО + SO 3 ® CaSO 4

Протекание этой реакции замедляется при снижении содержания свободной СаО и О 2 , что достигается сжиганием топлива при высоких температурах (например, при ЖШУ) и при работе с малыми избытками воздуха. Уменьшение образования связанных сульфатных отложений достигается также при снижении в зоне температуры газа менее 800 – 850 о С.

Для удаления отложений золы используются также различные способы очистки: обдувка паром или сжатым воздухом, вибрационный, дробевый, импульсный и др.

Вибрационный способ очистки преимущественно применяется для очистки ширмовых и конвективных пароперегревателей. Удаление отложений происходит под действием поперечных или продольных колебаний очищаемых труб, вызываемых специально устанавливаемыми вибраторами электромоторного (например С-788) или пневматического типа (ВПН-69).

На (см.рис.38) показан один из типов устройства виброочистки ширмового перегревателя с поперечными колебаниями труб. Возбуждаемые вибратором 3 колебания передаются виброштангам 2 и от них змеевикам труб 1. Виброштангу, как правило, приваривают к крайней трубе с помощью полуцилиндрических накладок. Аналогичным образом соединяются остальные трубы между собой и с крайней трубой. Виброочистка с продольным колебанием труб применяется преимущественно для вертикальных змеевиковых поверхностей нагрева, подвешенных (на пружинных подвесах) к каркасу котла.

Рис. 38. Установка виброочистки ширм:

1- трубы шары

2- виброштанга

3- вибратор.


Электромоторные вибраторы не позволяют поднять частоту колебаний выше 50 Гц , что оказывается недостаточным для разрушения связанных прочных отложений, образующихся на трубах при сжигании углей канско-ачинских, сланцев, фрезторфа и др. В этом случае целесообразно использовать пневматические генераторы колебаний (например ВПН-69), обеспечивающие достижение более высокого уровня (до 1500 Гц ) и широкого диапазона изменения частоты колебаний. Применение мембранных змеевиковых поверхностей значительно упрощает использование вибрационного метода очистки.

Дробевая очистка используется против прочносвязанных с трубами плотных отложений, удаление которых с помощью описанных выше методов не обеспечивается. На очищаемую поверхность равномерно разбрасываются с некоторой высоты стальные шарики (дробь) небольшого размера. При своем падении в результате удара о поверхность дробь разрушает отложения на трубах как с лобовой стороны, так и с тыльной (при отскоке от нижележащих труб) и с небольшой частью золы выпадает в нижнюю часть конвективной шахты. Эта зола может отсеиваться от дроби в специальных сепараторах, дробь же накапливается в бункерах, которые могут располагаться как под газоходом, в котором расположены очищаемые поверхности, так и над ним.

Основные элементы дробеочистки с нижним расположением бункеров показаны на (см.рис.39) .

Рис. 39. Принципиальная схема дробеочистки:

1 – бункер дроби

2 – сопло

3 – входное устройство

4 – дробепровод

5 – дробеуловитель

6 – тарельчатый питатель

7 – входной трубопровод

8 – разбрасыватель дроби

9 – дробь

10 – очищаемая поверхность

11 – воздуходувка

При включении установки дробь из бункера 1 сжатым воздухом (из сопла 2 ) подается во входное устройство 3 дробепровода 4 (или в инжектор - в установках под давлением). Транспортируемая воздухом дробь отделяется в дробеуловителях 5 , из которых с помощью тарельчатых питателей 6 распределяется по отдельным трубопроводам 7 разбрасывающих устройств 8.

Дробевые установки с пневмотранспортом дроби работают под давлением или разрежением. В первом случае воздух из воздуходувки 11 нагнетается через устройство 3 в линию подъема дроби 4 .

В качестве разбрасывающих устройств могут при меняться обращенные вверх полусферические разбрасыватели 8 , на которые из трубопровода 7 с определенной высоты падает дробь 9 и, отскакивая под различными углами, распределяется по очищаемой поверхности. Расположение подводящих трубопроводов и отражателей в зоне высоких температур требует применения водяного охлаждения.

Наряду с полусферическими отражателями достаточно эффективное применение нашли пневматические разбрасыватели с боковым (на стенах) забросом дроби по разгонным соплам.

Ввиду более высокой скорости удара дроби о поверхность труб их износ при пневматическом разбросе с боковым подводом выше, чем при разбросе с использованием полусферических отражателей.

В системах импульсной очистки используют камеры импульсного горения, в которых создаются периодически выбрасываемые с большой энергией потоки продуктов сгорания. С помощью возникающих в импульсной камере и передаваемых в газоходы волновых колебаний происходит разрушение отложений и очистка труб.

При интенсивном загрязнении труб прочными связанными отложениями применяют комплексную очистку, включающую различные способы.

Российская ФедерацияРД

РД 34.27.104-92 Методические указания по применению средств наружной очистки поверхностей нагрева паровых котлов

установить закладку

установить закладку

РД 34.27.104-92

Группа Е 25

РУКОВОДЯЩИЙ ДОКУМЕНТ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРИМЕНЕНИЮ СРЕДСТВ НАРУЖНОЙ ОЧИСТКИ ПОВЕРХНОСТЕЙ НАГРЕВА ПАРОВЫХ КОТЛОВ

Дата введения 1993-07-01

РАЗРАБОТАНЫ Всероссийским теплотехническим научно-исследовательским институтом (ВТИ), Сибирским филиалом ВТИ (СибВТИ), Уральским филиалом ВТИ (УралВТИ)

ИСПОЛНИТЕЛИ М.Н.Майданик (ВТИ), В.В.Васильев (СибВТИ), В.Я.Лысков (УралВТИ)

УТВЕРЖДЕНЫ Управлением научно-технического развития Российской корпорации электроэнергетики и электрификации "Росэнерго" 8 декабря 1992 г.

Начальник А.П.Берсенев

ВЗАМЕН МУ 34-70-123-86, МУ 34-70-145-86

Настоящие Методические указания распространяются на механизированные средства наружной очистки, предназначенные для профилактической очистки с газовой стороны поверхностей нагрева на работающих котлах, и устанавливают для них типы и область применения, методы их расчета, общие требования к наладке и эксплуатации.

С вводом в действие настоящих Методических указаний утрачивают силу МУ 34-70-123-86 "Методические указания по применению средств наружной очистки поверхностей нагрева паровых котлов", МУ 34-70-145-86 "Методические указания по расчету, проектированию и эксплуатации импульсных устройств очистки".

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Паровые котлы, сжигающие твердые и жидкие топлива, должны оборудоваться, как правило, комплексной системой очистки, включающей установку различных средств очистки отдельных поверхностей нагрева. Необходимость применения очистки той или иной поверхности нагрева определяется в каждом конкретном случае из условия обеспечения эксплуатационно чистого состояния поверхности и выдерживания при работе котлов требований действующих "Правил технической эксплуатации электрических станций и сетей" .

1.2. В качестве основных эксплуатационных средств очистки рекомендуется использовать аппараты паровой, водяной обдувки и газоимпульсные устройства очистки, различное сочетание которых позволяет в большинстве случаев создать комплексную систему очистки котлов при сжигании любых видов топлива.

В дополнение или взамен указанных средств очистки, в случае невозможности или нецелесообразности их применения, можно рекомендовать также использование устройств стационарной паровой ("пушечной") обдувки, установок дробевой очистки и устройств акустической очистки.

1.3. Для очистки топочных экранов (испарительных и перегревательных радиационных поверхностей нагрева) котлов, сжигающих твердые топлива, следует, как правило, применять аппараты водяной обдувки. Аппараты паровой обдувки целесообразно использовать лишь для очистки тех зон топочной камеры, где температура металла стенок труб превышает допустимую по условиям надежности экранных труб при водяной обдувке.

1.4. Для очистки полурадиационных (ширмовых) и расположенных в поворотном газоходе конвективных поверхностей нагрева котлов, сжигающих твердые и жидкие топлива, следует использовать в основном аппараты паровой обдувки либо устройства газоимпульсной очистки. Последние рассчитаны на удаление сыпучих и рыхлых (слабосвязанных) золовых отложений. Для топлив, дающих плотные (связанные) отложения (как, например, канско-ачинские бурые угли), предпочтительней установка аппаратов паровой обдувки.

При сжигании твердых топлив для локальной очистки указанных поверхностей нагрева в зонах интенсивного загрязнения (в основном в местах, труднодоступных для аппаратов паровой обдувки) можно рекомендовать дополнительную установку устройств "пушечной" обдувки. Для периодической очистки может быть рассмотрено применение в опытном порядке и аппаратов водяной обдувки.

1.5. Для очистки конвективных поверхностей нагрева, расположенных в вертикальной шахте (пароперегревателей, водяных экономайзеров), на котлах, сжигающих большинство твердых топлив, предпочтительней установка аппаратов паровой обдувки либо устройств газоимпульсной очистки.

На котлах, сжигающих малозольные твердые топлива, дающие сыпучие и рыхлые отложения золы, газомазутных котлах возможно применение и установок дробевой очистки. Дробевую очистку следует также применять для трубчатых воздухоподогревателей. В качестве альтернативного решения (преимущественно для котлов малой и средней мощности) может рассматриваться применение устройств акустической очистки.

1.6. Регенеративные воздухоподогреватели (РВП) следует очищать аппаратами паровой обдувки или устройствами газоимпульсной очистки.

2. ТИПЫ И ОБЛАСТЬ ПРИМЕНЕНИЯ СРЕДСТВ ОЧИСТКИ

2.1. Аппараты водяной обдувки

2.1.1. Аппараты водяной обдувки могут применяться на котлах, сжигающих твердые топлива, для очистки испарительных и перегревательных радиационных поверхностей нагрева, выполненных в виде настенных и двусветных топочных экранов, с температурой металла в зоне водяной обдувки не более 520 °С при применении низколегированных сталей и не более 440 °С при применении малоуглеродистых сталей. Под последней понимается максимальная расчетная температура наружной поверхности экранных труб в зоне обдувки.

В зонах топочной камеры с более высокой температурой металла экранных труб, а также для полурадиационных и конвективных поверхностей нагрева водяная обдувка может применяться только в опытном порядке.

2.1.2. В качестве обдувочного агента следует использовать техническую воду с температурой не более 60 °С и давлением 1-2 МПа.

маловыдвижные аппараты (с вводом сопловой головки в топку и ходом до 1 м), которые работают по схеме "на себя" и вращательно-поступательным движением сопла обеспечивают на топочном экране спиральный след струи;

дальнобойные аппараты (с невыдвигаемой в топку сопловой головкой), которые колебательным движением в горизонтальном направлении с одновременным вертикальным смещением сопла направляют струю воды через топку, обеспечивая зигзагообразный след струи на экране.

Дополнительно, для специальных применений, могут использоваться и глубоковыдвижные аппараты.

2.1.4. Для котлов с глубиной топок не более 15-17 м в большинстве случаев может быть рекомендована установка как маловыдвижных, так и дальнобойных аппаратов. Они могут применяться как самостоятельно, так и в сочетании друг с другом для повышения эффективности очистки и большей полноты охвата стен топки. В последнем случае установка маловыдвижных аппаратов наиболее целесообразна в зонах интенсивного шлакования экранов, в особенности при глубине топок свыше 10-12 м, а также в зонах, неохватываемых струями дальнобойных аппаратов.

В топках с гладкотрубными экранами при зазоре между экранными трубами более 4-5 мм по условиям надежности обмуровки предпочтительней установка маловыдвижных аппаратов.

В крупногабаритных топочных камерах следует в основном применять маловыдвижные аппараты. Дополнительная установка дальнобойных аппаратов может потребоваться в случае необходимости очистки скатов холодной воронки.

Глубоковыдвижные аппараты целесообразно использовать только для очистки зон топочных камер, труднодоступных для других типов аппаратов (в частности, для очистки узких секций, образованных двусветными экранами и ширмовыми "щеками"), а также при применении водяной обдувки для очистки трубных пучков.

2.1.5. Методы расчета и выбора схем установки аппаратов даны в РД 34.27.105-90 .

2.2. Аппараты паровой обдувки

2.2.1. Аппараты паровой обдувки могут применяться на котлах, сжигающих твердые и жидкие топлива, для очистки испарительных и перегревательных радиационных поверхностей нагрева, выполненных в виде настенных топочных экранов, полурадиационных (ширмовых) и конвективных поверхностей нагрева, РВП.

2.2.2. В качестве обдувочного агента следует использовать перегретый пар с температурой не менее 350 °С и давлением 1-4 МПа (в подводящих паропроводах).

для очистки топочных экранов - маловыдвижные аппараты (с ходом до 1 м) с вращательно-поступательным движением обдувочной трубы и регулированием давления пара по мере выдвижения сопловой головки, дающие спиральный след струи на топочном экране, а также аппараты, осуществляющие обдувку при вращении сопловой головки на постоянном расстоянии от топочного экрана;

для очистки ширмовых и конвективных поверхностей нагрева - глубоковыдвижные аппараты с вращательно-поступательным движением обдувочной трубы, дающие спиральный след струи в поперечных зазорах между трубами пучков;

для очистки РВП - аппараты с возвратно-поступательным перемещением многосопловой обдувочной трубы вдоль оси ротора либо с перемещением (поворотом) обдувочной трубы от центра ротора к периферии.

Дополнительно для очистки различных конвективных поверхностей нагрева могут быть применены глубоковыдвижные аппараты только с поступательным движением обдувочной трубы и многосопловой головкой, осуществляющие "веерную" обдувку, а также аппараты "грабельного" типа с возвратно-поступательным перемещением траверсных многосопловых головок.

2.2.4. Методы расчета и выбора схем установки аппаратов даны в разделе 3.

2.3. Устройства газоимпульсной очистки

2.3.1. Газоимпульсные устройства очистки могут применяться на котлах, сжигающих твердые и жидкие топлива, для очистки полурадиационных (ширмовых) и конвективных поверхностей нагрева, РВП.

2.3.2. В качестве рабочих агентов следует использовать горючие газы, включая электролизный водород, давлением 0,02-0,15 МПа и воздух давлением 0,002-0,6 МПа (в подводящих трубопроводах).

2.3.3. Для применения в энергетических котлах рекомендуется использовать устройства со стационарными импульсными камерами и постоянным источником газоснабжения по техническим документациям УралВТИ, завода "Котлоочистка" и НПО ЦКТИ.

2.3.4. Методы расчета и выбора схем установки аппаратов даны в разделе 4.

2.4. Устройства стационарной паровой ("пушечной") обдувки

2.4.1. Устройства "пушечной" обдувки могут применяться на котлах, сжигающих твердые топлива, для очистки полурадиационных (ширмовых) и конвективных поверхностей нагрева.

2.4.2. Для применения на энергетических котлах следует использовать устройства по технической документации завода "Котлоочистка", в качестве обдувочного агента - перегретый пар с температурой не ниже 450 °С и давлением 4-10 МПа.

2.5. Установки дробевой очистки

2.5.1. Установки дробевой очистки могут применяться на котлах, сжигающих жидкие и твердые топлива, для очистки конвективных поверхностей нагрева, включая трубчатые воздухоподогреватели, расположенные в вертикальных шахтах с опускным движением газов.

2.5.2. Для применения в энергетических котлах рекомендуются установки с пневмотранспортом дроби по технической документации завода "Котлоочистка", использующие в качестве очищающего агента металлическую дробь эквивалентным диаметром 4-6 мм, для транспорта дроби - воздух давлением 0,03-0,1 МПа.

2.6. Устройства акустической очистки

2.6.1. Устройства акустической очистки могут быть рекомендованы для опытно-промышленного применения на котлах, сжигающих жидкие топлива и каменные угли, для очистки конвективных поверхностей нагрева, включая трубчатые воздухоподогреватели, расположенные в вертикальных шахтах.

2.6.2. Для применения в энергетических котлах рекомендуются устройства по технической документации НПО ЦКТИ, работающие на перегретом паре давлением 0,4-0,5 МПа с основной генерируемой частотой звука 30-130 Гц.

3. РАСЧЕТ И ВЫБОР СХЕМ УСТАНОВКИ АППАРАТОВ ПАРОВОЙ ОБДУВКИ

3.1. Условные обозначения

3.2. Глубоковыдвижные аппараты

3.2.1. Для эффективного применения аппаратов паровой обдувки следует выдерживать следующие условия:

при сжигании твердых топлив температура газов на входе в обдуваемые поверхности должна превышать температуру начала шлакования;

ширина поперечного зазора между трубами во всех случаях должна составлять не менее 55-60 мм, при этом для твердых топлив, дающих плотные отложения, и расположении поверхности в зоне температур газов свыше 800 °С значения рекомендуется принимать не менее 110-120 мм.

Примечание. Указания раздела 3.2 относятся в основном к глубоковыдвижным аппаратам с вращательно-поступательным движением обдувочной трубы, устанавливаемым для очистки гладкотрубных и мембранных ширмовых и конвективных поверхностей нагрева. По аппаратам другого типа достаточного опыта их применения в отечественной практике нет.

3.2.2. В качестве обдувочного агента следует использовать перегретый пар с рабочим давлением перед соплами (за клапаном аппарата) в основном в диапазоне 1,2-2,0 МПа. Для малозольных твердых топлив, дающих золы невысокой абразивности, давление пара может быть повышено до 2,5-3,0 МПа.

Температура пара должна приниматься не ниже 350 °С при давлении пара менее 2,0 МПа. При давлении свыше 2,5 МПа температуру пара следует принимать не менее 400 °С.

3.2.3. При сжигании твердых топлив диаметры сопл рекомендуется принимать в соответствии с табл.1 в зависимости от комплекса

Где коэффициент абразивности золы принимается по "Нормам теплового расчета котельных агрегатов".

Таблица 1

Примечание. Диаметры сопл указаны для диапазона рабочего давления 2,0-1,2 МПа.

При установке аппаратов на газомазутных котлах =22-28 мм.

3.2.4. Расчетный расход перегретого пара через аппарат находится как

Где поправочный коэффициент

3.2.5. Аппараты устанавливаются в рассечке между обдуваемыми пакетами поверхностей нагрева, как правило, для очистки пакета с двух сторон в направлении и против движения газов.

3.2.6. При сжигании твердых топлив минимальное расстояние от оси сопловой головки до оси первого ряда труб обдуваемой поверхности рекомендуется принимать свыше значения

Но в любом случае не менее 400 мм.

При установке аппаратов на газомазутных котлах =350 мм.

Указанные расстояния определяются с учетом прогиба и биения обдувочной трубы.

3.2.7. Расстояние от оси аппарата до последнего ряда обдуваемых труб в пучке не должно превышать значения

где поправочные коэффициенты

Коэффициент определяется из номограммы (черт.1).

При определении поправочного коэффициента значения минимально эффективного динамического напора принимаются в зависимости от средней температуры газов:

для твердых топлив, дающих плотные (связанные) отложения золы (как, например, бурые угли Канско-Ачинского бассейна),

для твердых топлив, дающих в основном рыхлые (слабосвязанные) золовые отложения (для большинства каменных углей),

при сжигании жидких топлив

При образовании на трубах сыпучих золовых отложений =2-3 кПа.

При определении поправочного коэффициента под величиной понимается число рядов труб, вдоль которых распространяется струя аппарата. При этом для коридорных пучков труб

для шахматных пучков труб

3.2.8. Эффективная ширина струи (на входе в трубный пучок) рассчитывается как

Где поправочные коэффициенты , определяются из выражений (6), (7).

3.3. Маловыдвижные аппараты

3.3.1. Маловыдвижные аппараты следует применять для очистки по схеме "на себя" настенных топочных экранов, расположенных в вертикальной плоскости.

3.3.2. В качестве обдувочного агента следует использовать перегретый пар с рабочим давлением перед соплами (за клапаном аппарата) в основном в диапазоне 1,5-2,0 МПа. Для аппаратов со спиральным следом струи на экране давление пара (при максимальном вылете сопла) может быть повышено до 2,5-3,0 МПа.

При давлении пара до 2,0 МПа температура пара должна приниматься не менее 350 °С, при давлении свыше 2,5 МПа - не менее 400 °С.

3.3.4. Расчетный радиус действия аппаратов с постоянным вылетом сопловой головки во время обдувки находится как

Для аппаратов со спиральным следом струи на экране расчетный радиус обдувки принимается как наименьший из двух значений:

В формулах (11), (12) поправочные коэффициенты определяются из выражений (6), (7) и номограммы (черт.2).

Значения минимально эффективного динамического напора принимаются в зависимости от шлакующих свойств топлива:

3.4. Аппараты обдувки РВП

3.4.1. Обдувочные аппараты следует устанавливать в газовых патрубках РВП, как правило, для очистки набивки с двух сторон в направлении и против движения газов.

Минимальное расстояние от выходного среза сопл до обдуваемой поверхности =150-200 мм.

Примечание. Для эффективного применения аппаратов паровой обдувки следует выдерживать следующие условия:

температурный режим набивки должен исключать интенсивное образование низкотемпературных (влажных) золовых отложений;

при расширении в сопле обдувочный агент должен оставаться в области перегретого пара.

3.4.2. В качестве обдувочного агента следует использовать перегретый пар с рабочим давлением перед соплами (за клапаном аппарата) в диапазоне 0,5-1,5 МПа и температурой не менее 350-400 °С.

4. РАСЧЕТ И ВЫБОР СХЕМ УСТРОЙСТВ ГАЗОИМПУЛЬСНОЙ ОЧИСТКИ

4.1. Условные обозначения

4.2. Общие положения и конструктивные характеристики

4.2.1. Устройства газоимпульсной очистки (ГИО) представляют собой генераторы импульсных волн умеренной интенсивности. Генерация волн сжатия осуществляется за счет взрывного (дефлаграционного) горения газовоздушных смесей в камерах и истечения продуктов взрыва. Удаление золовых отложений с поверхностей нагрева устройствами ГИО осуществляется разрушающим действием волн сжатия и динамическим напором импульсной струи продуктов взрыва. Импульсный характер процесса ГИО вызывает также вибрацию очищаемых поверхностей, способствующую разрушению и удалению отложений.

4.2.2. Устройство ГИО (стационарного типа) состоит из импульсной камеры (ИК), трубопроводов, запорно-регулирующей арматуры, средств контроля и управления. ИК состоит из следующих основных узлов и элементов (черт.3):

ударной трубы 1, в которой происходит взрывное горение основного объема газовоздушной смеси;

форкамеры 2 (с турбулизатором), предназначенной для ускорения процесса взрывного горения в начальной стадии;

узла подготовки и зажигания смеси 4, состоящего из глушителя и смесителя.

ИК комплектуется запальником 5, предназначенным для периодического поджигания смеси, и блоком питания 6 запальника.

4.2.3. Ударная труба выполняется из труб наружным диаметром 219-426 мм с толщиной стенки не менее 10 мм (уточняется прочностным расчетом на импульсное давление 3,5 МПа при температуре стенки 300 °С в соответствии с ОСТ 108.031.08-85*, ОСТ 108.031.09-85*).

* На территории Российской Федерации действует , здесь и далее по тексту. - Примечание изготовителя базы данных.

Длина ударных труб обычно составляет 10-50 в зависимости от волновой мощности . Значения рекомендуются принимать в зависимости от площади очищаемых поверхностей в следующих диапазонах:

В зависимости от выбираемой и размеров объектов очистки ударные трубы выполняются одно- или многосопловыми (2-4 сопла). Разветвления ударной трубы на несколько сопл осуществляется применением плавных переходов (с углом не более 60°), суммарная площадь сечения сопл должна равняться площади сечения основной ударной трубы.

4.2.4. Корпус форкамеры выполняется из труб, аналогичных ударной трубе или на 1-2 типоразмера больше. Длина форкамеры составляет 1,5-2 в зависимости от выбранного турбулизатора.

Форкамера одним концом соединяется сваркой с ударной трубой непосредственно или через конусный переход с углом не более 90°. Другой конец закрывается днищем (толщиной примерно 15 мм) с ребрами жесткости или диффузорным переходом на диаметр примерно 50 мм для подачи в камеру смеси. В нижней части форкамеры устанавливается дренажный патрубок с условным диаметром около 50 мм.

4.2.5. При выборе турбулизаторов необходимо руководствоваться выполнением следующих условий:

минимальное сопротивление потоку смеси и продуктам взрывного горения;

конструктивная простота и технологичность изготовления;

максимально развитая турбулизирующая поверхность. Этим требованиям в наибольшей мере соответствуют следующие конструкции турбулизаторов (черт.4):

штыревой (а) - в котором штыри диаметром =20-30 мм расположены в плоскости винтовой поверхности, проходят через ось по диаметру форкамеры и привариваются к последнему; зазор между штырями =1-3 мм, количество штырей в одном витке - 12-36 шт., высота турбулизатора ;

диафрагменный (б) - изготавливаемый из листа толщиной S примерно 15 мм с расположенными в шахматном порядке отверстиями с =8-15 мм; живое сечение отверстий составляет 30% сечения ударной трубы, диафрагма приваривается на расстоянии ;

шнековый (в) - который содержит 1-3 витка () при шаге витка и выполняется из листа толщиной не менее 10 мм сваркой к трубе форкамеры;

турбулизатор с перегородками (г) - в котором сегменты выполняются из листа толщиной примерно 10 мм и крепятся к форкамере на сварке; рекомендуется устанавливать 3-8 перегородок с шагом ;

турбулизатор с пристенной спиралью (д) - изготавливаемый из прутка с =20-40 мм с шагом витка =50-150 мм; высота спирали ;

турбулизатор в виде перфорированной трубы с шнековым завихрителем (е) - в котором перфорации диаметром 8-15 мм выполняются в трубе диаметром 70-120 мм, шнек выполняется из листа толщиной около 10 мм с шагом ; количество витков - 3-4 шт.

кофузорные с углом 30-60° - для очистки поверхностей, расположенных на расстоянии более 3-4 мм от выхлопных сопл; они выполняются круглой, эллиптической или овальной формы, выходное сечение их должно быть уменьшено на 10-15% по отношению к сечению элемента ударной трубы;

диффузорные с углом 30-60° - для очистки поверхностей, расположенных на небольших расстояниях от выхлопных сопл (менее 3 м);

цилиндрические - которые по направленности излучения волн сжатия занимают промежуточное положение среди указанных выше;

щелевые - для очистки РВП, трубчатых воздухоподогревателей и других низкотемпературных поверхностей нагрева.

Щелевые сопла на РВП устанавливаются на минимально возможном по условиям компоновки расстоянии до очищаемых пакетов. Размеры щелевого сопла принимают в следующих пределах: ширина щелей - 50-80 мм, длина - 300-500 мм, ширина перемычек между щелями - 50-60 мм, радиус закругления щелей - 10-20 мм, длина щелевого сопла принимается равной радиусу ротора РВП. Суммарная площадь всех щелей должна в 2-3 раза превышать площадь сечения сопловой трубы.

4.2.7. Выхлопные сопла всех конструкций выполняются из труб диаметром 219-325 мм с толщиной стенки не менее 8 мм. Зазор между экранными трубами и выхлопными соплами должен составлять не менее 20 мм, выход среза сопла в газоход - 20-50 мм. В местах прохода через ограждения сопла устанавливаются во втулках с сальниковыми уплотнениями.

В качестве материалов при изготовлении выхлопных сопл используются следующие:

при температуре дымовых газов менее 500 °С - стали марки 10, 20, 2сп, 4сп;

при температуре газов 500-850 °С - стали марки Х12Н10Т, 0X18H10T;

при температуре газов свыше 850 °С - стали марки 20Х20Н14С2, 20Х2Н20С2.

Длина части сопла, выполняемой из указанных материалов, составляет 200-400 мм.

в виде перфорированной газовой трубы (условным диаметром 12-20 мм) с диаметром отверстий 1-2 мм, расположенной в подводящем воздуховоде (условным диаметром 50 мм) перпендикулярно или соосно;

в виде воздуховодной трубы (условным диаметром 50 мм), перфорированной отверстиями диаметром 1-2 мм в 2-3 ряда, которые закрыты коробом; в короб подводится газ.

Смесители размещают перед глушителем. Глушитель выполняется в виде емкости из трубы диаметром 219 мм, длиной 200-300 мм с двумя перфорированными (отверстиями диаметром 3-5 мм) внутри патрубками (условным диаметром 50 мм). Для повышения запирающего эффекта полость глушителя набивается стружкой цветных или нержавеющих металлов или кольцами Рашига.

на корпусе глушителя;

на смесепроводе (труба условным диаметром 50 мм);

на форкамере.

4.3 Компоновка устройств и методы расчета

4.3.1. При выборе мест установки выхлопных сопл следует руководствоваться следующими общими рекомендациями:

направлять сопла в зоны наибольшей интенсивности загрязнения перпендикулярно очищаемым трубам (для использования вибрационного эффекта очистки) по потоку дымовых газов или перпендикулярно ему;

щелевые сопла на РВП устанавливать по радиусу РВП в газовом патрубке против потока на минимальном расстоянии от очищаемых пакетов (для подсушки отложений продуктами взрыва);

для очистки фестонов и ширм сопла размещать с фронта топки и на боковых стенах котлов между ширмами (за фестонами) по 1-3 шт. с шагом по высоте 2-3,5 м;

для очистки конвективных пакетов, расположены вверху конвективной шахты, сопла располагать в потолочных трубах, направляя их вниз с шагом 2,5-4 м по фронту котла; для очистки последующих пакетов сопла размещать в стенах конвективной шахты в межпакетных пространствах с шагом 2,5-4 м.

В зависимости от объекта очистки выбирается тип ИК по и проводится предварительная компоновка устройств (с использованием указаний п.п.4.2.3-4.2.5, 4.3.1).

По выбранному значению , используя эмпирическую зависимость

Проводится построение волновых полей каждого устройства и определяются зоны, в которых уровень давления в волнах сжатия составляет не менее 150 дВ. Зоны, ограниченные изобарой с указанным значением давления, являются зоной эффективной очистки.

Из построенных компоновок выбирается оптимальная схема, обеспечивающая требуемые условия очистки поверхностей нагрева. По ней и проводят конструирование основных узлов ИК и корректировку компоновки. При этом объем ИК определяют по формуле:

Где коэффициенты =0,05; =0,5 м/с, значение рекомендуется принимать в диапазоне 0,6-2 м/с. Значения и выбираются в зависимости от конструкции турбулизатора по табл.2.

Таблица 2

Расход стехиометрической смеси в ИК определяется по формуле:

периодичность импульсов как

4.3.3. Поверочный расчет на прочность производится для всех элементов ИК в соответствии с ОСТ 108.031.08-85, ОСТ 108.031.09-85 на действие статической и циклической нагрузок от максимально возможного давления, равного 3,5 МПа.

4.3.4. Выбор материала и расчет опор и креплений ИК к котлу следует производить в соответствии с ГОСТ 14911-82 , ГОСТ 16127-79. При этом необходимо учитывать массу камер, реактивную силу при импульсном выхлопе из сопл и тепловое расширение конструкции камер при максимальном прогреве до 300 °С. Импульсную реактивную силу рекомендуется определять по формуле:

Где =0,2 МПа.

При расчете неподвижных опор следует вводить поправочный коэффициент, равный 1,5.

5. ОБЩИЕ ТРЕБОВАНИЯ ПО НАЛАДКЕ И ЭКСПЛУАТАЦИИ

5.1. Наладку и эксплуатацию средств очистки проводят согласно инструкции по эксплуатации предприятия-изготовителя (разработчика) с учетом требований и рекомендаций данного раздела.

5.2. Наладка средств очистки проводится перед пуском их в работу (на остановленном котле) и в процессе эксплуатации на работающем котле. Она должна выполняться после монтажа, ремонта или реконструкции средств очистки, а также при изменении вида и качества топлива либо других условий эксплуатации, приводящих к изменению характера и интенсивности загрязнения очищаемых поверхностей нагрева.

5.3. Наладка на работающем котле осуществляется сразу после пуска котла в работу со средствами очистки с обязательным предварительным удалением золовых отложений на очищаемых поверхностях нагрева. При наладке устанавливают режим и порядок включения отдельных средств очистки.

В каждом конкретном случае режим очистки определяют из условий получения наибольшего эффекта очистки при обеспечении надежной работы металла очищаемых поверхностей нагрева. Рекомендации по режимам очистки аппаратами паровой обдувки и устройствами газоимпульсной очистки приведены в обязательных приложениях 1 и 2.

5.4. Установленный в период наладки режим очистки корректируется в процессе эксплуатации исходя в основном из результатов визуального контроля за состоянием экранов, изменения сопротивления и температур газового тракта, тепловой эффективности поверхностей нагрева, надежности работы систем шлакоудаления и золоулавливания, а также результатов контроля за состоянием металла очищаемых поверхностей нагрева.

5.5. При комплексной или комбинированной очистке наладка и выбор режима очистки всех средств очистки должны проводиться одновременно.

5.6. При наладке и эксплуатации средств очистки обязателен контроль за состоянием металла очищаемых поверхностей нагрева.

5.7. Средства очистки должны включаться регулярно с режимами очистки, определенными при наладке, а также непосредственно перед остановом котла. Средства очистки разных типов включают, как правило, последовательно. Порядок включения средств очистки - как правило, по ходу газов.

5.8. Средства очистки, а также системы дистанционного и автоматического контроля ими должны находиться в постоянной готовности к действию. Не допускается включение средств очистки при неисправной системе защит.

Приложение 1
Обязательное

1. Режим очистки устанавливают при наладке и эксплуатации в основном по следующим параметрам: давлению пара перед соплами аппаратов, периодичности включения аппаратов, количеству одновременно включаемых аппаратов.

Давление пара в основном определяет эффект разовой очистки, периодичность включения аппаратов в большей степени зависит от темпа загрязнения поверхности.

Примечание. Аналогичный изменению давления эффект очистки может быть также получен за счет варьирования диаметра сопл в аппарате. При этом повышение давления пара, например, в 1,5 раза эквивалентно по интенсивности воздействия струи увеличению диаметра сопла примерно в 1,2 раза.

2. Давление пара перед соплами глубоковыдвижных аппаратов (при очистке ширмовых и конвективных поверхностей нагрева) рекомендуется принимать: 2,0-1,6 МПа при соплах диаметром 12-20 мм, 1,6-1,2 МПа при соплах большего диаметра. При сжигании малозольных топлив с золой невысокой абразивности давление пара может быть повышено в 1,3-1,5 раза.

Для маловыдвижных аппаратов (при очистке топочных экранов) обычный диапазон давлений пара составляет 2,0-1,5 МПа при соплах диаметром 16-22 мм (в аппаратах со спиральным следом струи и регулируемым давлением максимальные значения могут быть выше в 1,3-1,5 раза).

3. Периодичность включения аппаратов при очистке топочных экранов принимают обычно 1-3 раза в сутки, ширмовых и конвективных поверхностей нагрева - 1 раз в сутки.

4. Давление пара и периодичность включения аппаратов уточняют в процессе наладки и эксплуатации по показателям, указанным в п.5.4, при этом следует учитывать следующее:

повышение давления пара, равно как и уменьшение длительности межобдувочного периода, может приводить к усилению износа труб, в особенности при сжигании многозольных топлив с абразивной золой;

при паровой обдувке трудно добиться эксплуатационно чистого состояния очищаемых поверхностей нагрева. Достижимый эффект очистки заключается в основном в удалении золовых отложений из поперечных зазоров между трубами (газовых каналов) и устранении больших их наростов, что позволяет поддерживать в эксплуатации стабильный уровень загрязнения, аэродинамического сопротивления тепловой эффективности поверхностей нагрева;

при образовании плотных слоев первичных отложений золы, шлаковых наростов и влажных низкотемпературных золовых отложений паровая обдувка становится малоэффективной.

5. Количество одновременно включаемых аппаратов принимают обычно 2-4 и уточняют по условиям выдерживания давления перед аппаратами и устойчивости ведения режима котла. Аппараты включают в противофазе.

6. Перед проведением обдувки должно быть выполнено тщательное дренирование паропроводов от скопившегося конденсата. Порядок включения аппаратов также должен предусматривать исключение возможности скапливания конденсата перед неотработавшими аппаратами.

пределы концентрации смеси, обеспечивающие устойчивый режим работы камер;

оптимальная концентрация смеси, при которой генерируется максимальная волновая энергия;

оптимальная периодичность импульсов во всем диапазоне расходов смеси;

оптимальные периодичность и длительность включения по условиям эффективности очистки.

2. Первоначальное включение устройств ГИО в работу необходимо осуществлять при минимальных расходах смеси и максимальной частоте импульсов (=2-4 с).

Повышение волновой мощности устройств ГИО следует производить после прогрева камер в течение 3-5 мин плавным без срыва режима поочередным увеличением расхода воздуха и газа. При этом, фиксируя давление в волнах сжатия в котле или на площадке обслуживания импульсным шумомером, зарегистрировать по манометрам давление воздуха и газа, при которых генерируется максимальная волновая мощность. Аналогично определяется оптимальная периодичность импульсов.

3. В период пуско-наладочных работ рекомендуется устройства ГИО включать в работу регулярно не реже одного раза сутки на 15-30 мин. В дальнейшем в зависимости от эффективности очистки корректируются и устанавливаются необходимые периодичность включения и длительность работы устройств ГИО.

А.П. Погребняк, заведующий лабораторией, В.Л. Кокорев, главный конструктор проекта, А.Л. Кокорев, ведущий инженер, И.О. Моисеенко, инженер 1 категории, А.В. Гультяев, ведущий инженер, Н.Н. Ефимова, ведущий конструктор, ОАО «НПО ЦКТИ», г. Санкт-Петербург

Разработка импульсных средств очистки поверхностей нагрева была начата специалистами НПО ЦКТИ в 1976-1978 гг. в связи с тем, что длительный опыт эксплуатации котлов промышленной и коммунальной энергетики, котлов-утилизаторов и энерготехнологических аппаратов различных производств, оборудованных традиционными средствами очистки, показал их недостаточную эффективность и надежность, которая в значительной мере снижала экономичность работы агрегатов (уменьшение КПД на 2-3%).

С момента создания в НПО ЦКТИ первых промышленных устройств газоимпульсной очистки (ГИО) началось сотрудничество с ведущими котлостроительными заводами (Белэнергомаш, БиКЗ, ДКМ). Так, например, в 1986 г. ГИО ЦКТИ был оборудован головной образец котла-утилизатора РКЖ-25/40 производства Белгородского котлостроительного завода, установленного за печью плавки медных концентратов в жидкой ванне на Балхашском горно-металлургическом комбинате , что обеспечило эффективную очистку его радиационных и конвективных поверхностей нагрева . Применение ГИО ЦКТИ для очистки поверхностей нагрева котлов-утилизаторов производства БЗЭМ за печами кипящего слоя обжига колчедана в линии производства серной кислоты на ПО «Азот» города Мелеуз (КС-250 ВТКУ, КС-450ВТКУ) решило проблему охлаждения дымовых газов до уровня, позволяющего создать условия надежной работы электрофильтров .

Положительный опыт стал предпосылкой для выбора ГИО в качестве средства очистки при разработке НПО ЦКТИ проектов унифицированной серии котлов-утилизаторов для БЗЭМ, к выпуску которых было решено приступить в начале 90-х годов. .

ГИО также широко внедрялась взамен устройств дробевой очистки и паровой обдувки на котлах производства Бийского котлостроительного завода (котлы ДЕ, КЕ, ДКВР) и завода Дорогобужкотломаш (котлы КВ-ГМ, ПТВМ) . Было налажено промышленное производство экономайзеров, оборудованных устройствами ГИО на Кусинском машиностроительном заводе.

В 1986 г. ГИО ЦКТИ была принята в промышленное производство на заводе «Ильмарине» (г. Таллин), а в 1990 г. начались поставки заводских систем ГИО на объекты промышленной и коммунальной энергетики СССР . Однако, в 1991 г. эти поставки были прекращены, и многие котлостроительные заводы для комплектации своего оборудования начали выпуск устройств ГИО собственного производства, как правило, обладавшими рядом конструктивных недостатков.

Специалисты НПО ЦКТИ продолжали внедрять ГИО собственной разработки на котлах различного назначения, а с 1989 г. и на камерах конвекции нефтенагревательных печей. При этом шло совершенствование ГИО в направлении повышения их технического уровня, надежности и безопасности, в результате чего были созданы полностью автоматизированные системы ГИО.

Первые опытные и промышленные устройства ГИО были рассчитаны на практически полностью ручную схему управления исполнительными механизмами, что значительно затрудняло процесс их эксплуатации, вызывая необходимость частых настроек оборудования, требовало специальных навыков и дополнительной подготовки обслуживающего и эксплуатирующего персонала. Для устранения этих факторов были начаты разработки технических средств для автоматизации систем ГИО. Первая полностью автоматизированная система ГИО была внедрена в 1998 г. в рамках выполнения контракта с котлостроительной фирмой «AALBORG KEYSTONE» (Дания) на котле-утилизаторе, установленном за дизельгенераторами мощностью 30 МВт на электростанции Заводов Мертвого моря в Израиле (фото 1).

Фото 1. ГИО на котле-утилизаторе электростанции Заводов Мертвого моря (Израиль).

ГИО была установлена взамен ненадежных и малоэффективных устройств воздушной обдувки на пароперегревателе котла-утилизатора, работающего под наддувом до 3000 Па, что, в свою очередь, потребовало разработки конструктивных решений по защите узлов и трубопроводов ГИО от дымовых газов. При этом система ГИО устойчиво работала как в автоматическом (с пульта управления станции), так и в ручном режимах, выполняя все заданные программы на всех режимах работы котла во всем диапазоне давлений дымовых газов (от 0 до 3000 Па) без переналадки. Узлы аспирации, установленные на выхлопных соплах импульсных камер, обеспечивали надежную защиту камер и трубной системы ГИО от дымовых газов. ГИО обеспечила эффективную очистку поверхностей нагрева пароперегревателя, расположенных вне зоны шлакования и холодную расшлаковку пакетов пароперегревателя, находящихся в зоне шлакования .

В 1999 г. автоматизированной системой ГИО был оборудован котел OL-20 фирмы «Рафако» (Польша) с топкой для сжигания подсолнечной лузги, который был сдан в промышленную эксплуатацию на Запорожском МЖК.

В процессе внедрения ГИО на оборудовании отечественных и зарубежных предприятий котлостроения в период с 2000 по 2005 г. в ОАО «НПО ЦКТИ» были созданы системы с унифицированными узлами и комплексами автоматического управления (фото 2).

Фото 2. Унифицированные узлы системы ГИО для котельного агрегата.

В 2006 г. на нефтенагревательной печи ВДМ-1, проекта и поставки фирмы «Foster Wheeler» для завода «ЛУКОЙЛ – Нефтохим – Бургас» АД (Болгария), система ГИО была установлена взамен предусмотренной проектом печи системы очистки с использованием паровых обдувочных аппаратов (фото 3) и обеспечила эффективную очистку оребренных змеевиков камеры конвекции при значительном сокращении металлоемкости, габаритов и эксплуатационных затрат по сравнению с паровой обдувкой .

Фото 3. Элементы системы ГИО на печи ВДМ-1 «ЛУКОЙЛ – Нефтохим-Бургас» АД (Болгария).

Работы с зарубежными котлостроительными фирмами способствовали повышению технического уровня и надежности систем ГИО, что внесло свой вклад при внедрении ГИО ЦКТИ и для объектов в России.

С 2006 г. действует договор между ОАО «Дорогобужкотломаш» и ОАО «НПО ЦКТИ» на поставку технологических блоков для систем ГИО водогрейных котлов, выпускаемых заводом. В настоящее время осуществлена поставка около 40 технологических блоков. При этом импульсные камеры и трубопроводы производятся на заводе. Такая форма сотрудничества выгодна для обеих сторон.

С середины 2000-х г.г. возобновились поставки автоматизированных систем ГИО ЦКТИ на ведущие котлостроительные заводы России и стран СНГ. Для Белозерского энергомашиностроительного завода (Белоруссия) были разработаны проекты для серии головных образцов котлов Е-30-3,9-440ДФ, Е-20-3,9-440ДФ, Е-10-3,9-440ДФ, сжигающих торф и древесные отходы. ГИО котла Е-30-3,9-440ДФ была сдана в эксплуатацию на Белорусской ГРЭС-1 в марте 2013 г. В ближайшее время планируется поставка ГИО для котлов Е-20-3,9-440ДФ и Е-10-3,9-440ДФ. Для данных типов котлов был разработан новый комплекс управления коллекторной схемой с общим технологическим блоком и электромагнитными клапанами подачи газовоздушной смеси к нескольким группам импульсных камер. В мае 2013 года для вновь строящегося котла КВГМ-139,6-150, Новосибирской ТЭЦ-2 была выполнена поставка на Бийский котлостроительный завод. В настоящее время разработан проект и планируется поставка для ОАО «Сибэнергомаш» двух ГИО для котлов Е-100-1,6-535ГМН, работающих под наддувом 4000 Па, предназначенных для установки на ТЭЦ Ангарского нефтехимического комбината. Подача воздуха на аспирацию предусмотрена от котельного вентилятора.

В 2008 г. автоматизированная система ГИО была внедрена на двух водогрейных котлах КВГМ-100 котельной №1 ФГУП «Горно-химический комбинат» (г. Железногорск, Красноярский край), работающих на высокосернистом мазуте.

Предусмотренная проектом дробеочистка не эксплуатировалась ввиду ее низкой эффективности и надежности. До внедрения ГИО каждые два месяца котлы останавливали для проведения очистки вручную, методом водяной обмывки поверхностей нагрева по причине значительного роста температуры уходящих газов (более чем на 60° С) и сопротивления газового тракта, что приводило к невозможности работы котлов с нагрузкой выше 50% от номинала. Водяная обмывка в условиях отложений серы на элементах конвективных пакетов вызывала сернокислотную коррозию металла, что сокращало срок службы поверхностей нагрева примерно в два раза. Кроме того, возникала проблема нейтрализации кислой обмывочной воды.

При выполнении этой работы в рассечках конвективных пакетов каждого котла были установлены по шесть импульсных камер диаметром 325 мм, соединенных в три группы. Газовоздушная смесь была подведена к каждой группе камер от технологических блоков (по 3 шт. на каждом котле), выполняющих все необходимые функции в соответствии с алгоритмом работы. Управление системой ГИО осуществляется из блока управления, выполненного на основе промышленного контроллера и расположенного в помещении операторной. Очистка конвективных пакетов производится при последовательной работе импульсных камер по ходу дымовых газов.

В результате внедрения систем ГИО КПД на каждом котле увеличилось на 1-1,5%, а регулярное включение ГИО один раз в сутки обеспечивает содержание поверхностей нагрева в эксплуатационно-чистом состоянии и поддерживает температуры уходящих газов на уровне регламентных значений. Снижение сопротивления по тракту дымовых газов позволяет обеспечить работу котлов с номинальной нагрузкой. Отказ от водных обмывок существенно увеличивает срок службы поверхностей нагрева. Увеличилась выработка тепловой энергии за счет исключения останова котлов на проведение трудоемких ручных очисток. Эксплуатационные расходы на ГИО незначительны: один баллон с пропаном емкостью 50 л обеспечивает работу системы ГИО в течение трех недель, а потребляемая электрическая мощность не превышает 2 кВт при длительности цикла очистки 10-12 мин.

Продолжается сотрудничество и с зарубежными заказчиками. Так, в августе 2013 г. закончены работы по проектированию системы ГИО для котла-утилизатора К-35/2,0-130, предназначенного для установки за блоком регенерации катализатора в линии каталитического крекинга завода «ЛУКОЙЛ – Нефтохим-Бургас» АД (Болгария). Котел-утилизатор должен работать под наддувом до 10000 Па, что потребовало при разработке проекта предусмотреть защиту узлов и трубопроводов ГИО от проникновения в них дымовых газов за счет постоянной подачи воздуха от собственного вентилятора ГИО в узлы аспирации, расположенные между импульсными камерами и газоходом котла, в связи с чем были приняты новые конструктивные и схемные решения по совершенствованию комплекса управления для применения в конкретных условиях эксплуатации. В настоящее время ведутся работы по изготовлению и комплектации системы ГИО, сертификации ее на соответствие требованиям Директивы Европейского Союза 97/23/EC с целью получения международного сертификата и права нанесения СЕ маркировки. Ввод в эксплуатацию намечен в апреле 2014 г.

Наряду с совершенствованием и внедрением систем ГИО, специалисты НПО ЦКТИ продолжили работы по исследованию и разработке систем пневмоимпульсной очистки (ПИО), начало которым было положено около 35 лет назад . Широкое применение системы пневмоимпульсной очистки получили в странах Западной Европы и США . В последние годы некоторые фирмы вышли на отечественный рынок. Началом возобновления российских работ в этой области стала разработка ОАО «НПО ЦКТИ» технического проекта системы ПИО в опытно-промышленном варианте для котлов КВ-Р-8-115 ОАО «Ковровкотломаш». При разработке этого проекта был использован ряд новых технических решений, повышающих надежность, эффективность, простоту эксплуатации системы ПИО, расширяющих сферу ее применения .

Литература

1. Погребняк А.П., Вальдман А.М. Опыт освоения котлов-утилизаторов для печей плавки цветных металлов // Труды ЦКТИ. 1989. Вып. 250.

2. Гдалевский И.Я., Гришин В.И., Погребняк А.П., Вальдман А.М. Опыт промышленного внедрения газоимпульсной очистки на водогрейных, паровых котлах и котлах-утилизаторах // Труды ЦКТИ. 1989. Вып. 248.

3. Изотов Ю. П., Голубов Е. А., Кочеров М. М. Повышение эффективности работы поверхностей нагрева котлов-утилизаторов для печей обжига колчедана в кипящем слое.

4. Котлы утилизаторы и котлы энерготехнологические: Отраслевой каталог. М., 1990.

5. Романов В.Ф., Погребняк А.П., Воеводин С.И., Яковлев В.И., Кокорев В.Л. Результаты освоения автоматизированных систем газоимпульсной очистки (ГИО) конструкции ЦКТИ на котлах промышленной и коммунальной энергетики и на технологических печах нефтеперерабатывающих заводов // Труды ЦКТИ. 2002. Вып. 287.

6. Аппараты и устройства очистки поверхностей нагрева: Отраслевой каталог. М., 1987.

7. Погребняк А. П., Кокорев В. Л., Воеводин С. И., Кокорев А. Л., Гультяев А. В. Ефимова Н. Н. Результаты внедрения автоматизированных систем ГИО ЦКТИ на нефтенагревательных печах, котлах-утилизаторах и водогрейных котлах // Труды ЦКТИ. 2009. Выпуск 298.

8. А. с. № 611101 СССР Устройство для импульсной очистки поверхностей нагрева парогенераторов от наружных отложений / Погребняк и др., 1978.

9. Погребняк А.П., Кокорев В.Л., Воеводин С.И., Кокорев А.Л., Семенова С.А. Устройства импульсной и акустической очистки теплообменных и технологических поверхностей. Создание, освоение и перспективы // Труды ЦКТИ. 2009. Вып. 298.

10. Пат. 123509 РФ. Устройство для импульсной очистки поверхностей нагрева от наружных отложений / Погребняк А.П., Кокорев В.Л., Кокорев А.Л., Моисеенко И.О. Опубл. 27.12.2012. Бюл. № 36.

Поделиться: