Что такое количественный способ регулирования отпуска тепла. Регулирование нагрузки в системах теплоснабжения

Приветствую Вас, дорогие и уважаемые читатели сайта “сайт”. Итак, продолжим наш курс лекций. Чтобы в дальнейшем нам хорошо усваивать материал про тепловую нагрузку и расчет тепловой нагрузки на отопление здания. Сегодня поговорим, про регулирование отпуска теплоты в системе теплоснабжения предприятий и жилых районов и начнем строить график тепловых нагрузок.

Методы регулирования тепловых нагрузок

Тепловые нагрузки потребителей теплоты как правило не постоянны. Они могут меняться от климатических условий. К нагрузкам, которые зависят от климатических условий относятся отопительная тепловая нагрузка Q О = f(t Н, 0 С; V Н, м/с), вентиляционная тепловая нагрузка Q В = f(t Н, 0 С; V Н, м/с). Эти нагрузки также по характеру протекания во времени являются сезонными. Также тепловые нагрузки могут изменяться в зависимости от количества включенных водоразборных приборов, степени их открытия и числа людей, которые ими пользуются. К таким нагрузкам относится на ГВС Q ГВС = f(N ПРИБ, q ПРИБ, м). Q ГВС не зависит от климатических условий и по характеру протекания во времени является круглогодичной.

Также тепловые нагрузки могут изменяться от количества работающего технологического оборудования, степени его загрузки и режима его работы. К таким нагрузкам относится Q Т = f(N ОБ, q Т, К ОДН, К ЗАГР). Q Т также не зависит от климатических условий и по характеру протекания во времени является круглогодичной.

Для того, чтобы качественно обеспечивать теплоснабжением необходимо, чтобы все потребители тепловой энергии получали именно то количество теплоты, которое им требуется. И поэтому, чтобы постоянное удовлетворять запросы потребителя тепловые нагрузки должны регулироваться.

Регулирование тепловых нагрузок бывает:

– центральное, которое осуществляется на источнике теплоснабжения одновременно для вех потребителей.

– местное, которое осуществляется только для отдельной группы потребителей на центральных или индивидуальных тепловых пунктах.

– индивидуальное, которое осуществляется непосредственно на нагревательных приборах и установках потребителей теплоты.

Регулирование отопительных нагрузок терморегулирующими клапанами на каждый отопительный прибор.

Тепловая энергия, поступающая из системы теплоснабжения, передается потребителям теплоты в различных теплообменных аппаратах (радиаторы, вентиляционные калориферы, подогреватели ГВС). В любом из этих теплообменных аппаратах количество передаваемой теплоты определяется по выражению:

Q = К ТА *F ТА *Δt*n (1)

К ТА – коэффициент теплопередачи (кДж/м 3 *t 0 С)

К ТА – площадь поверхности нагрева (м 3)

Δt – средняя разность температуры между греющим теплоносителем и нагреваемой средой (температурный напор)

n – время работы теплообменного аппарата

Поверхность нагрева любого теплообменного аппарата рассчитывается и выбирается по самому неблагоприятному для него режиму работы, в котором для передача требуемого количества теплоты требуется максимальная поверхность нагрева. Этот режим работы теплообменного аппарата называется расчетным. Выбранная для расчетного режима работы максимальная поверхность нагрева во всех остальных режимах работы теплообменного аппарата остается постоянной.

Когда изменяется количество теплоты, проходящей через любой обменный аппарат, то это значит, что данный теплообменный аппарат вынужден работать в нерасчетном режиме (переменном).

Для расчетного режима работы теплообменного аппарата должны быть заданы следующие величины:

  1. Расчетная (т.е. максимальная) тепловая нагрузка Q Р
  2. Расчетные температуры греющего теплоносителя и нагреваемой среды на входе/выходе теплообменного аппарата (τ 1 Р, τ 2 Р) (t 1 Р, t 2 Р)
  3. Расчетный коэффициент теплопередачи теплообменного аппарата, К ТА.

Принципиальная схема движения теплоносителей для теплообменного аппарата в расчетном режиме

Противоточный теплообменный аппарат. Расчетные расходы теплоносителей определяются после составления теплового баланса теплообменного аппарата:

G ГТ Р = Q Р / (С ГТ *(τ 1 Р – τ 2 Р)* n ТА) (3)

G ГТ Р – расчетный (максимальный) расход греющего теплоносителя

G НС Р – расход нагреваемой среды

С ГТ, С НС – массовые теплоемкости

n ТА – КПД теплообменного аппарата.

Изменение режима работы теплообменного аппарата можно осуществлять воздействуя на:

– коэффициент теплообменного аппарата, К ТА

– среднюю разность температуры Δt

– время работы аппарата (n, час)

– расход греющего теплоносителя.

В реальности изменять в широких пределах коэффициент теплопередачи теплообменного аппарата сложно, и остается только 3 способа воздействия на количество теплоты передаваемое потребителю.

  1. Метод качественного регулирования тепловой нагрузки

При этом методе регулирования изменяется температура греющего теплоносителя, подающегося в трубопровод тепловой сети, а расход греющего теплоносителя всегда остается постоянным, т.е. τ 1 Р не равно τ 1 = var, G ГТ Р = G ГТ = const.

При изменении температуры греющего теплоносителя меняется, и температура сетевой воды в обратном трубопроводе тепловой сети. Соответственно, по выражению (2)

G ГТ Р *С ГТ *(τ 1 Р – τ 2 Р)*n ТА = G НС Р *С НС *(t 2 Р – t 1) = Q=Q Р

меняется и тепловая нагрузка, передаваемая теплообменных аппаратом. Следовательно, Q Р не равно Q = var.

График изменения температуры и расхода греющего теплоносителя при качественном методе регулирования тепловой нагрузки

(график зависимости температуры и расхода от температуры наружного воздуха)

t Н.РО. = t Н.РВ. = t Н.Х. Б – температуры наружного воздуха, расчетные для проектирования систем отопления и вентиляции зданий (принимаем по параметрам ”Б”).

t Н.О. – температура наружного воздуха соответствующая началу и окончанию отопительного периода.

t Н = t В Р – температура воздуха внутри помещения.

Интервал температуры от t Н.РО. до t Н.О. – соответствует отопительному периоду, t Н.О. до t Н – летний период.

Метод качественного регулирования тепловых нагрузок получил широкое распространение при централизованном теплоснабжении и от водяных систем, т.к. снижение τ 1 и τ 2 позволяют уменьшать давление пара теплофикационных отборов турбин и увеличивать выработку электроэнергии на ТЭЦ по теплофикационному циклу. Увеличение выработки электроэнергии на ТЭЦ приводит к возрастанию экономии топлива. Следующим преимуществом метода качественного регулирования является уменьшение готовых потерь теплоты от тепловых сетей в окружающую среду.

  1. Метод количественного регулирования тепловой нагрузки

При этом методе изменяется расход греющего теплоносителя, а температура греющего теплоносителя в подающем трубопроводе тепловой сети остается постоянной: G ГТ Р не равно G ГТ = var; τ 1 Р =τ 1 =const. Изменение расхода греющего теплоносителя приводит к изменению температуры в обратном трубопроводе тепловой сети и соответственно по выражению (2)

G ГТ Р *С ГТ *(τ 1 Р – τ 2 Р)*n ТА = G НС Р *С НС *(t 2 Р – t 1) = Q=Q Р

измененная тепловая нагрузка, переданная теплообменному аппарату.

Графики изменения температуры и расхода греющего теплоносителя при количественном методе регулирования тепловой нагрузки

Достоинством количественного метода является сокращение потребляемой электроэнергии на перекачку сетевой воды. Экономия электроэнергии достигается либо отключением части работающих сетевых насосов котельной или ТЭЦ, либо установкой на работающих насосах частотно-регулирующего привода.

Недостатком метода является резкое колебание расхода сетевой воды во всей системе теплоснабжения. Это обстоятельство приводит к разрегулированию системы отопления и вентиляции здания и нестабильной работе отопительных приборов и вентиляции калориферов.

  1. Метод регулирования тепловой нагрузки ”местными пропусками”

При этом методе все теплообменные аппараты систем теплоснабжения зданий работают в расчетном режиме, т.е. остается постоянный расход греющего теплоносителя, а также температуры греющего теплоносителя в подающем и обратном трубопроводах тепловой сети и, следовательно, по выражению (2), количество теплоты, переданное теплообменному аппарату также должно оставаться постоянным. Но при этом способе регулирования изменяется продолжительность работы теплообменного аппарата в течении суток, т.е. n=var и, следовательно, изменяется количество теплоты, переданное теплообменному аппарату. Q Р не равно Q = var.

Количество теплоты, переданное от теплообменного аппарата в течение суток определяется по выражению:

Q = Q Р *n /24 (кДж/сут)

0 – теплообменник не работает

Q Р – теплообменник работает в расчетном режиме.


И.М. Сапрыкин, главный технолог,
ООО ПНТК «Энергетические Технологии», г. Нижний Новгород


Введение

В системах теплоснабжения имеются весьма значительные резервы экономии теплоэнергетических ресурсов, в частности тепловой и электрической энергии.

В последнее время на рынке появилось много нового высокоэффективного оборудования и технологий, направленных на повышение комфортности проживания и экономичности систем теплоснабжения. Правильное применение новаций предъявляет высокие требования к инженерному корпусу. К сожалению, с инженерными кадрами происходит обратное явление: снижение численности квалифицированных специалистов в сфере теплоснабжения.

Для выявления и наилучшего использования резервов экономии необходимо в том числе знание законов регулирования отпуска теплоты. В технической литературе вопросам практического применения режимов регулирования отпуска теплоты не уделено должного внимания. В этой статье сделана попытка восполнить этот пробел, при этом предложен несколько иной подход к формированию основных уравнений, описывающих режимы регулирования отпуска теплоты, чем изложенные в технической литературе, например .


Описание предлагаемых методик

Известно, что законы регулирования отопительных нагрузок зданий могут быть получены из системы трех уравнений, описывающих тепловые потери здания через ограждающие конструкции, теплоотдачу нагревательных приборов в здании и подачу теплоты по тепловым сетям. В безразмерном виде эта система уравнений выглядит следующим образом . Расчетное значение температуры теплоносителя на выходе из отопительных приборов - τ о.2 р, °С, должно выбираться на основе технико-экономических обоснований в пределах t в.р о < τ о.2 р < τ о.3 р. Однако в зданиях, построенных в настоящее время и в предшествующие периоды, площадь поверхности установленных отопительных приборов позволяет охлаждать сетевую воду только до температуры τ о.2 р =70 °С. Поэтому для СЦТ с большим количеством функционирующих зданий принимают τ о.2 р =70 °С.

1-Б. Определяют характеристику изменения коэффициента теплопередачи отопительных приборов - K о, кДж/(с×м 2 ×°С), при изменениях температуры теплоносителя.

Для отопительных приборов и конвекторов, при постоянстве расхода теплоносителя, изменение K о подчиняется зависимости

K о =А о ×Δt о m , (2.113)

где А о - постоянный коэффициент, зависящий только от типа отопительного прибора и схемы его подключения, кДж/(с×м 2 ×(°С) (1+m)); Δt о =0,5×(τ о.3 + τ о.2)-t в.р о - разность между средней температурой теплоносителя в отопительном приборе и температурой внутреннего воздуха в отапливаемом помещении, °С; m - безразмерный показатель степени, постоянный для конкретного типа прибора и схемы его подключения. Для разных типов приборов m находится в пределах 0,17 < m < 0,33 [ 3 ].

Для большинства схем подключения и типов приборов m = 0,25, что и принимают для централизованного регулирования. А корректировку для других схем подключения и типов приборов производят у индивидуальных аппаратов.

1-В . Получают расчетные зависимости метода качественного регулирования систем водяного отопления.

Для района с известными значениями V зд, м 3 ; q о, кВт/(м 3 ×°С); μ зд.ж р, рассчитанными по (2.8) и (2.37а), составляют балансовые уравнения расхода теплоты на отопление жилого здания - Q о.зд.ж, кВт, при произвольном значении температуры наружного воздуха t н и при ее расчетном значении t н.х Б.5 - Q о.зд.ж р:

Это система из двух независимых уравнений с тремя неизвестными (t н,τ 0.3 ,τ 0.2). Принимая 1+ m = 1,25, решают систему уравнений (2.115) относительно температуры τ 0.2 при различных значениях t i:

При присоединении отопительной системы здания к тепловой сети по зависимой схеме через элеватор (рис. 2.2.1, а), сетевая вода от источника теплоснабжения подается с температурой τ 0.1 >τ 0.3 . Коэффициент инжекции элеватора сохраняет постоянное значение во всем диапазоне качественного регулирования, определяемое уравнением

Рис.2.9.1 По уравнениям (2.117), (2.118), (2.120) и по построенным с их использованием графикам (рис. 2.9.1) при любом значении температуры наружного воздуха t н вычисляют величины температур τ 0.1 , τ 0.2 , τ 0.3 при качественном регулировании отопительной нагрузки жилого района.

Рис. 2.9.1. Графики изменения температуры (а) и расхода (б) сетевой воды при качественном регулировании отопительных систем:

___________ – водяное отопление; - - - - - - – воздушное отопление без тепловыделений в цехах; – . – . – . – . – . – . – – то же с тепловыделениями; 1 – τ 0.1 =f(t н); 2 – τ 0.2 =f(t н); 3 – τ 0.3 =f(t н)

1-Г . Получают расчетные зависимости метода качественного регулирования систем воздушного отопления цехов промпредприятий как тех, в которые не поступает теплота внутренних тепловыделений, так и в тех, где имеются значительные тепловыделения.

В помещениях промышленных предприятий широко используют системы воздушного отопления с безэлеваторным присоединением водовоздушных калориферов к тепловым сетям (см. рис. 2.2.2). Особенностью этих систем является постоянство величины коэффициента теплопередачи калориферов при любых изменениях t н.

В случае получения теплоты для отопления цехов от собственного источника теплоснабжения уравнения для регулирования температуры отпускаемой им сетевой воды имеют вид:

  • для цехов без внутренних тепловыделений
τ 0.2 тв = t в.р о + (τ 0.2 р -t в.р о)*[(t в.р о -t н)*Σ i=1 i=Mн *(1+μ п ср)*10 -3 -Q тв ]/[(t в.р о -t н.х Б.5)*Σ i=1 i=Mн *(1+μ п ср)*10 -3 -Q тв ] (2.124)

Графики изменения температур и расхода этих систем представлены на рис. 2.9.1.

Методика 2 – методика регулирования отпуска теплоты в водяных тепловых сетях, одновременно обеспечивающих потребителей с разнородными видами теплопотребления.

В подавляющем большинстве двухтрубных водяных сетей горячая вода из подающей трубы одновременно поступает в системы отопления, вентиляции и горячего водоснабжения (см. рис. 2.1.1).

Различие в требованиях к температурам сетевой воды, предъявляемых разнородными потребителями, вводит ограничения на используемые методы централизованного регулирования, вынуждая переходить на их комбинирование в ходе отопительного периода. В таких сетях метод качественного регулирования отопительной нагрузки применяется в интервале изменения температуры наружного воздуха t н.х Б.5 ≤ t н ≤ t н.и (I зона). Здесь t н.и - температура наружного воздуха, при которой величина t[], вычисляемая по (2.120), (2.121), (2.123), понижается до τ 0.1.и = 70ºС (при использовании закрытой системы горячего водоснабжения) или до τ 0.1.и = 60ºС (при открытой).

В интервале температур наружного воздуха t н.и ≤ t н ≤ t в.р о (II зона) потребность отопительных систем в теплоте удовлетворяется при τ 0.1 = τ 0.1.и = const и местном изменении продолжительности их подключения к тепловой сети. Температуры τ 0.3 = τ 0.3.и и τ 0.2 = τ 0.2.и тоже остаются постоянными (рис. 2.9.2).

Рис. 2.9.2. Графики изменения температуры (а) и расхода (б) сетевой воды в системах отопления, вентиляции и горячего водоснабжения:

___________ – водяное отопление и горячее водоснабжение с параллельным включением подогревателей; . . . . . . . – системы вентиляции; – . – . – . – . – . – . – – смешанное включение подогревателей горячего водоснабжения

Время подключения отопительной системы здания к тепловой сети - n 0 , ч/сут:

n 0 =24×(t в.р о -t н)/(t в.р о -t н.и). (2.125)

2-А . Режим потребления теплоты для открытой системы теплоснабжения.

Получают расчетные зависимости регулирования отпуска теплоты для открытой системы горячего водоснабжения (рис. 2.1.1). В открытых системах горячего водоснабжения к потребителям поступает смесь воды из подающей трубы тепловой сети с температурой τ 0.1 , определяемой по (2.120) или (2.121) и из обратной трубы с температурой τ 0.2 , определяемой по (2.117) или (2.122).

Расход сетевой воды на горячее водоснабжение из подающего трубопровода G г п ]и из обратного трубопровода G г п, кг/с:

G г п =Q г.в ср.н (t г -τ 0.2)/[(t г -t х)С(τ 0.1 -τ 0.2),

G г о =Q г.в ср.н (τ 0.1 -t г)/[(t г -t х)С(τ 0.1 -τ 0.2).

2-Б. Режим потребления теплоты для закрытой системы теплоснабжения при параллельном включении подогревателей системы горячего водоснабжения и системы отопления.

В этом случае в систему горячего водоснабжения (рис. 2.4.5) поступает сетевая вода с температурой τ 0.1 , определяемой по (2.120) или (2.121); необходимо вычислить температуру воды, сливаемой из системы, – t г.2 и ее расход G г. Расчетным значением температуры наружного воздуха для определения минимально необходимой площади поверхности нагрева подогревателей является температура t н.и. При этой температуре с учетом технико-экономических расчетов задают температуру сливающейся из подогревателей сетевой воды в период прохождения максимальной часовой нагрузки Q г р. Обычно эта температура находится в диапазоне t г.2.и р = (30–35) ºС.

Определив расчетную разность температур в подогревателях

Δt г р =[(τ 0.1.и -t г)-(t г.2.и р -t х)]/ln[(t г -t х)/(t г.2.и р -t х)],

расчетные расходы сетевой G г.и р и водопроводной G г.в р воды, поступающей в подогреватели

G г.и р =Q г р /[С(τ 0.1.и -τ г.2.и р)]; G г.в р =Q г р /[С(t г -t х ],

вычисляют расчетное значение коэффициента теплопередачи – К г р =А г ×(G г.в р) 0,5 ×(G г.и р) 0,5 и максимально необходимую площадь поверхности нагрева подогревателей F г = Q г.1 р /(К г р ×Δt г р) .

При изменении в течение суток потребления на цели горячего водоснабжения подогретой водопроводной воды изменяется и потребление сетевой воды – G г, и ее температура – τ г.2.и.

График регулирования ориентирован на удовлетворение средненедельной потребности в теплоте – Q г ср.н. Для его построения необходимо установить значения τ г.2.и и Q г.и ср.н, в связи с чем составляется отношение уравнения теплового баланса подогревателей при температуре t н.и в часы прохождения средненедельной тепловой нагрузки Q г ср.н к аналогичному уравнению при прохождении расчетного значения тепловой нагрузки Q г р:

G г.и ср.н =Q г.в ср.н *С(τ 0.1.и -τ г.2.и).

На основе уравнения теплового баланса подогревателей при средненедельной нагрузке и любом произвольном значении температуры t н в I зоне, а также аналогичного уравнения при температуре t н.и получается соотношение

τ г.2 =τ 0.1 -(τ 0.1.и -τ г.2.и)×[(τ 0.1 -t г)-(τ г.2 р -t х)]/[Δt г.и ср.н *ln[(τ 0.1 -t г)/(τ г.2 р -t х)] 2 (2.128)

Во II зоне τ г.2 =τ г.2.и. Характер изменения τ г.2 в I и II зонах представлен на рис. 2.9.2.

2-В. Режим потребления теплоты для закрытой системы теплоснабжения при последовательно-параллельном включении подогревателей системы горячего водоснабжения и системы отопления.

Как и в случае 2-Б, за расчетную температуру наружного воздуха при проектировании этой системы принимают t н.и, а расчетная тепловая нагрузка составляет Q г р.

При выборе поверхности нагрева подогревателя первой ступени задаются температурой нагрева в ней водопроводной воды t пр р =τ 0.2.и р -(5-10), °С. Определяют: расчетную тепловую нагрузку первой ступени - Q г.1 р =G г.в р ×C×(t пр р -t х.з); расчетную нагрузку второй ступени - Q г.2 р =G г.в р

Вычислив расчетную логарифмическую разность температур в подогревателях каждой ступени

Δt г.1 р =[(τ 0.2.и р -t пр р)-(τ 2.и р -t х.з)]/, Δt г.2 р =[(τ 0.1.и р -t г)-(τ 0.2.и р -t пр р)]/,

определяют для них площади поверхности нагрева:

F г.1 = Q г.1 р /(К г.1 р ×Δt г.1 р) и F г.2 = Q г.2 р /(К г.2 р ×Δt г.2 р).

Графики расхода сетевой воды, поступающей во вторую ступень, - G г.2 ср.н и температуры сетевой воды после подогревателя первой ступени - τ 2 ср.н строят для постоянной тепловой нагрузки Q 2 ср.н при различных значениях t н в границах I зоны.

С этой целью, по аналогии с выражением (2.126), составляют отношение балансовых уравнений первой и второй ступени и из них определяют численные значения t пр.и, τ 2.и, τ 0.2.и, G г.2.и.

После их нахождения, раздельно для первой и второй ступени, а также для системы в целом, составляют уравнения отношений тепловых балансов при средненедельной нагрузке и любом произвольном значении t н в первой зоне, к аналогичному балансу при t н.и:

/ =(t пр -t х.з)/(t пр.и -t х.з)

= [(G о +G г.2)/(G о +G г.2.и)] 0,5 *[(τ 0.2 -t пр)-(τ 2 -t х.з)]/Δt г.1.и ;

(2.129)
=(t г -t пр)/(t г -t пр.и)

0,5 *[(τ 0.1 р -t г)-(τ 0.2 -t пр)]/Δt г.2.и ;

(2.130)
1= /= [(G о +G г.2)/(G о +G г.2.и)] 0,5 *[(τ 0.2 -t пр)-(τ 2 -t х.з)]/Δt г.1.и + 0,5 *[(τ 0.1 р -t г)-(τ 0.2 -t пр)]/Δt г.2.и . (2.131)

Решая эту систему уравнений, получают изменение значений τ 2 и G г.2 от t н в первой зоне. Во второй зоне τ 2 =τ 2.и и G г.2 = G г.2.и остаются постоянными. Характер этих изменений показан на рис. 2.9.2.

2-Г. Режим потребления теплоты для закрытой системы теплоснабжения при последовательном включении подогревателей системы горячего водоснабжения и системы отопления.

Расчетные зависимости регулирования отпуска теплоты в систему горячего водоснабжения при последовательной схеме включения ее подогревателей и отопительной системы изложены в .

2-Д. Режим потребления теплоты для системы теплоснабжения при включении системы вентиляции.

Получают расчетные зависимости регулирования отпуска теплоты для системы вентиляции (рис. 2.1.1). В двухтрубных водяных тепловых сетях вода из подающего трубопровода поступает в водовоздушные калориферы вентиляционных установок с температурой τ 0.1 . Коэффициент теплопередачи этих калориферов К в =А в ×(ρ×W в.з) P ×(W в) L, где ρ×W в.з – удельный массовый расход воздуха, проходящего через калориферы, кг/(м 2 ×с); W в – скорость движения сетевой воды, проходящей через калорифер, м/с; А в, P, L - постоянные величины, принимаемые по .

Для системы вентиляции помещений коэффициент теплопередачи в вентиляционных калориферах К в =А в * ×(В п) P ×(W в) L, где В п - массовый расход воздуха, проходящего через калорифер, кг/с. Для большинства типов калориферов показатели степени P = 0,5; L = 0,15.

Расчетная температура наружного воздуха для проектирования вентиляции t н = t н.х Б.5 , а максимальное количество теплоты, переданное в калорифере, - Q в р = В п ×С в.з (t в.п - t н.х Б.5). При t н = t н.х Б.5 температуру сетевой воды на выходе из калорифера на основании технико-экономических расчетов принимают равной τ в.2 р = (50…70 °С). Расчетная разность температур в калорифере Δt в р =0,5×(τ 0.1 р +τ в.2 р - t в.п - t н.х Б.5), где t в.п - температура воздуха перед вентилятором, °С.

Определив требуемую поверхность калориферов F в =Q в р /(К в ×Δt в р), переходят к определению характера изменений температуры τ в.2 и расхода G в в I зоне.

Составляя отношение теплового баланса калорифера вентиляционных установок при любом значении t н (не выходящем за пределы I зоны температурного графика) к аналогичному тепловому балансу при t н.х Б.5 , получают

К.т.н. П.В. Ротов, доцент, кафедра «Теплогазоснабжение и вентиляция»,
Ульяновский государственный технический университет, г. Ульяновск

Эффективность традиционных технологий выработки теплоты на ТЭЦ в последние годы существенно снизилась. В отечественных системах теплоснабжения почти повсеместно нарушаются основные принципы качественного регулирования, не работает прежняя структура отпуска теплоты. Это обусловлено целым рядом причин, о которых неоднократно говорилось в работах . На фоне снижения эффективности централизованного теплоснабжения существенно повысилась привлекательность децентрализованных систем теплоснабжения.

Сложилась ситуация, когда термодинамически более эффективные централизованные системы из-за нерациональной технической и сбытовой политики руководства энергетических компаний не могут конкурировать с децентрализованными системами. Нередки случаи, когда потребителям для подключения к централизованной системе теплоснабжения руководство энергетических компаний выдает неосуществимые технические условия. Часто потребители добровольно отключаются от централизованных систем теплоснабжения. В большинстве случаев децентрализованные системы применяются для ухода от централизованного теплоснабжения, а не в результате технико-экономического сравнения различных систем.

В настоящее время необходимо полностью пересмотреть концепцию отечественного теплоснабжения. Изменившаяся структура отпуска теплоты подразумевает применение новых более экономичных технологий в системах теплоснабжения. Одним из перспективных направлений развития отечественного теплоснабжения является совершенствование технологий регулирования тепловой нагрузки путем перехода к низкотемпературному теплоснабжению, количественному и качественно-количественному регулированию.

Методы центрального регулирования были разработаны с учетом технических и технологических возможностей первой половины ХХ века, которые претерпели значительные изменения.

При корректировке принципов регулирования тепловой нагрузки возможно частичное использование зарубежного опыта по применению других методов регулирования, в частности, количественного регулирования.

Перевод систем теплоснабжения на количественное и качественно-количественное регулирование тепловой нагрузки является, как показывает опыт зарубежных стран, эффективным энергосберегающим мероприятием . Проведем сравнительный анализ способов регулирования тепловой нагрузки.

Качественное регулирование.

Преимущество: стабильный гидравлический режим тепловых сетей.

Недостатки:

■ низкая надежность источников пиковой тепловой мощности;

■ необходимость применения дорогостоящих методов обработки подпиточной воды теплосети при высоких температурах теплоносителя;

■ повышенный температурный график для компенсации отбора воды на ГВС и связанное с этим снижение выработки электроэнергии на тепловом потреблении;

■ большое транспортное запаздывание (тепловая инерционность) регулирования тепловой нагрузки системы теплоснабжения;

■ высокая интенсивность коррозии трубопроводов из-за работы системы теплоснабжения большую часть отопительного периода с температурами теплоносителя 60-85 ОС;

■ колебания температуры внутреннего воздуха, обусловленные влиянием нагрузки ГВС на работу систем отопления и различным соотношением нагрузок ГВС и отопления у абонентов;

■ снижение качества теплоснабжения при регулировании температуры теплоносителя по средней за несколько часов температуре наружного воздуха, что приводит к колебаниям температуры внутреннего воздуха;

■ при переменной температуре сетевой воды существенно осложняется эксплуатация компенсаторов.

Количественное и качественно-количественное регулирование.

Преимущества:

■ увеличение выработки электроэнергии на тепловом потреблении за счет понижения температуры обратной сетевой воды;

■ возможность применения недорогих методов обработки подпиточной воды теплосети при t,i110°C;

■ работа системы теплоснабжения большую часть отопительного периода с пониженными расходами сетевой воды и значительной экономией электроэнергии на транспорт теплоносителя;

■ меньшая инерционность регулирования тепловой нагрузки, т.к. система теплоснабжения более быстро реагирует на изменение давления, чем на изменение температуры сетевой воды;

■ постоянная температура теплоносителя в подающей магистрали теплосети, способствующая снижению коррозионных повреждений трубопроводов теплосети;

■ наилучшие тепловые и гидравлические показатели по режиму систем отопления за счет уменьшения влияния гравитационного напора и снижения перегрева отопительных приборов;

■ возможность применения при τ^110 ОС в местных системах и квартальных сетях долговечных трубопроводов из неметаллических материалов;

■ поддержание температуры сетевой воды постоянной, которое благоприятно сказывается на работе компенсаторов;

■ отсутствие необходимости в смесительных устройствах абонентских вводов.

Недостатки:

■ переменный гидравлический режим работы тепловых сетей;

■ большие, по сравнению с качественным регулированием, капитальные затраты в теплосети.

В работах показано, что в будущем в отечественных системах теплоснабжения все большее распространение получат способы количественного и качественно-количественного регулирования тепловой нагрузки. Однако количественное и качественно-количественное регулирование, которое обладает целым рядом преимуществ перед качественным регулированием, как было показано выше, не может быть внедрено в существующих системах теплоснабжения без их определенной модернизации и применения новых технологических решений. В настоящее время отсутствуют схемы ТЭЦ, на которых возможно реализовать новые способы регулирования.

В научно-исследовательской лаборатории «Теплоэнергетические системы и установки» УлГТУ (НИЛ ТЭСУ) под руководством проф. Шарапова В.И. разработаны технологии количественного и качественно-количественного регулирования тепловой нагрузки применительно к действующим ТЭЦ с водогрейными котлами . Особенность новых технологий заключается в параллельном включении пиковых водогрейных котлов и сетевых подогревателей турбин.

За счет понижения максимальной температуры нагрева теплоносителя до 100- 110 ОС и использования количественного или качественно-количественного регулирования новые технологии позволяют повысить надежность пиковых водогрейных котлов ТЭЦ и шире использовать преимущества теплофикации. При разделении сетевой воды на параллельные потоки снижается гидравлическое сопротивление в оборудовании ТЭЦ, более полно используется тепловая мощность сетевых подогревателей турбин, а также водогрейных котлов за счет увеличения температурного перепада на их входе и выходе до 40-50 ОС, а также увеличивается электрическая мощность ТЭЦ и возрастает абсолютная величина комбинированной выработки электрической энергии.

Существующие методики расчета способов количественного и качественно-количественного регулирования тепловой нагрузки разработаны в 50-60 гг. ХХ века и не учитывают многих факторов, например, нагрузки на ГВС.

В НИЛ ТЭСУ разработаны методики расчета количественного и качественно-количественного регулирования тепловой нагрузки . В основу методик расчета положено уравнение гидравлики, связывающее потери напора в теплосети с расходами воды на отопление и ГВС. Существенной особенностью предложенных методик является более полный учет влияния нагрузки ГВС на работу систем отопления.

В результате расчетного исследования построены зависимости относительного располагаемого напора на коллекторах станции и относительного эквивалента расхода воды на отопление от температуры наружного воздуха при количественном регулировании (рис. 1, 2).

Построенные зависимости можно использовать в качестве графиков регулирования при осуществлении количественного и качественно-количественного регулирования нагрузки в открытых системах теплоснабжения.

При количественном и качественно-количественном регулировании организацию переменного расхода сетевой воды в теплосетях необходимо сопровождать полным оснащением местных систем теплопотребления приборами автоматического регулирования параметров теплоносителя и гидравлической защиты от возникновения аварийных режимов. В НИЛ ТЭСУ разработан ряд технических решений по стабилизации гидравлического режима местных систем отопления при переменном расходе воды в теплосети (рис. 3) .

Особенностью одного из предложенных решений является то, что регулирование тепловой производительности местной системы теплопотребления производят изменением расхода обратной сетевой воды с помощью регулятора расхода, установленного после системы отопления. Установка регулятора расхода после системы отопления позволяет свести к минимуму влияние нагрузки ГВС на работу системы отопления без значительного увеличения расхода сетевой воды в тепловой сети.

Полное оснащение всех потребителей тепловой энергии приборами автоматического регулирования и гидравлической защиты способствует перенесению основной доли регулирования на местные системы. Роль центрального регулирования при этом сводится к корректировке параметров теплоносителя на коллекторах теплоисточника в зависимости от параметров теплоносителя на абонентских вводах.

В НИЛ ТЭСУ УлГТУ разработаны технологии комбинированного теплоснабжения, особенностью которых является покрытие базовой части тепловой нагрузки системы теплоснабжения за счет высокоэкономичных отборов пара теплофикационных турбин ТЭЦ и обеспечение пиковой нагрузки с помощью автономных пиковых источников теплоты, установленных непосредственно у абонентов. Один из вариантов таких систем теплоснабжения изображен на рис. 4.

В такой системе теплоснабжения ТЭЦ работает с максимальной эффективностью при коэффициенте теплофикации равном 1.

В качестве автономных пиковых источников теплоты могут быть использованы газовые и электрические бытовые отопительные котлы, электрообогреватели, тепловые насосы. В НИЛ ТЭСУ УлГТУ разработан и запатентован ряд технологий комбинированного теплоснабжения от централизованных и местных источников. Преимуществом этих технологий является возможность каждого абонента самостоятельно выбирать момент включения пикового теплоисточника и величину нагрева воды в нем, что повышает качество теплоснабжения и создает более комфортные условия индивидуально для каждого потребителя. Кроме того, при аварийных ситуациях на ТЭЦ и перебоях с централизованным теплоснабжением в работе остаются автономные источники теплоты абонентов, которые будут работать в качестве основных, что позволяет защитить систему теплоснабжения от замерзания и существенно повысить ее надежность.

Технико-экономическое исследование основных технических параметров систем теплоснабжения позволило доказать целесообразность перевода систем теплоснабжения на новые технологии регулирования тепловой нагрузки. Расчеты показывают, что приведенные затраты в системе теплоснабжения при реализации количественного регулирования тепловой нагрузки на 40-50% меньше затрат при качественном регулировании тепловой нагрузки.

Выводы

1. В настоящее время необходимо пересмотреть положения концепции централизованного теплоснабжения, касающиеся регулирования тепловой нагрузки и структуры покрытия тепловых нагрузок потребителей. Одним из перспективных направлений развития отечественных систем теплоснабжения является низкотемпературное теплоснабжение при количественном и качественно-количественном регулировании тепловой нагрузки.

2. Разработанные в НИЛ ТЭСУ технологии позволяют добиться повышения экономичности и надежности работы систем теплоснабжения за счет повышения эффективности работы пиковых источников тепловой мощности, экономии топливно-энергетических ресурсов и увеличения выработки электроэнергии на тепловом потреблении, снижения расхода энергии на транспорт теплоносителя.

3. Разработана методика расчета количественного и качественно-количественного способов регулирования тепловой нагрузки. Построены зависимости относительного располагаемого напора на коллекторах станции и относительного эквивалента расхода воды на отопление от

температуры наружного воздуха при количественном регулировании. Эти зависимости при- 1. менимы в качестве графиков регулирования при осуществлении количественного и качественно-количественного регулирования нагрузки в от- 2. крытых системах теплоснабжения.

4. Предложены технологии стабилизации гидравлического режима местных систем отопления при переменном расходе воды в теплосети. Полное оснащение всех потребителей тепловой энергии приборами автоматического регулиро- 3. вания и гидравлической защиты способствует перенесению основной доли регулирования на местные системы. Роль центрального регулиро- л. вания при этом сводится к корректировке параметров теплоносителя на коллекторах теплоисточника в зависимости от параметров теплоно- 5. сителя на абонентских вводах.

5. Предложены технологии комбинированного теплоснабжения потребителей. Преимуществом этих технологий является возможность каж- 6. дого абонента самостоятельно выбирать момент включения пикового теплоисточника и величину нагрева воды в нем, что повышает качество теплоснабжения и создает более комфортные условия индивидуально для каждого потребителя.

6. Произведено технико-экономическое сравнение различных способов регулирования 8. нагрузки систем теплоснабжения. Способы количественного и качественно-количественного регулирования по большинству показателей превосходят распространенный в настоящее время способ качественного регулирования.

Литература

Шарапов В. И., Ротов П.В. Технологии регулирования нагрузки систем теплоснабжения. Ульяновск: УлГТУ, 2003. - 160 с.

АндрющенкоА.И., Николаев Ю.Е. Возможности повышения экономичности, надежности и экологичности систем теплофикации городов // Энергосбережение в городском хозяйстве, энергетике, промышленности: Материалы Третьей Российской научно-технической конференции. Ульяновск: УлГТУ. 2001. С. 194-197. Андрющенко А. И. Возможности повышения эффективности систем централизованного теплоснабжения городов // Промышленная энергетика. 2002. № 6. С. 15-18. Шарапов В.И., Орлов М.Е. Пиковые источники теплоты систем централизованного теплоснабжения. - Ульяновск: УлГТУ. 2002. 204 с.

Пат. 2184312(RU), МКИ7F22D 1/00, F24H1/00. Способ работы пиковой водогрейной котельной/В. И. Шарапов, М.Е. Орлов, П.В. Ротов//Бюллетень изобретений. 2002. № 18.

Пат. 2184313(RU), МКИ7F22D 1/00, F24 H 1/00. Способ работы пиковой водогрейной котельной / В. И. Шарапов, М.Е. Орлов, П.В. Ротов// Бюллетень изобретений. 2002. № 18.

Шарапов В.И., Ротов П.В. О регулировании нагрузки открытых систем теплоснабжения// Промышленная энергетика. 2002. № 4. С. 46-50.

Пат. 2235249 (RU). МКИ7 F24 D 3/08. Способ теплоснабжения / В.И.Шарапов, М.Е.Орлов, П.В. Ротов, И.Н.Шепелев // Бюллетень изобретений. 2004. №24.

Поделиться: