Опорные конструкции. Воздушные линии электропередачи

Иногда виток состоит не из одного, а из нескольких параллельных проводов. При этом провода должны иметь равную длину и одинаковое сцепление с полем рассеяния, иначе будут значительные дополнительные потери. Поэтому параллельные провода, образующие виток, если они расположены перпендикулярно потоку рассеяния, должны соответственно транспонироваться, т. е. меняться местами.

Транспозиция параллельных проводов в непрерывной обмотке

В непрерывной обмотке параллельные провода меняют местами в переходах из одной катушки в другую, причем число переходов получается равным числу параллельных проводов в витке. Как видно, параллельные провода при переходе из первой катушки во вторую меняются местами, т. е. верхние провода становятся нижними, а нижние - верхними. Чтобы это осуществить, переходы проводов смещают один по отношению к другому. Смещение производят обычно на один пролет между рейками. В результате виток, состоящий из двух параллельных проводов, занимает своими переходами два пролета, из трех - три пролета, из четырех - четыре.
Практикой изготовления многопараллельных непрерывных обмоток выработано правило, согласно которому началом и концом катушки, виток которой состоит из нечетного числа параллельных проводов, считают средний провод, а при четном числе параллельных проводов - последний провод первой половины всех проводов. Так, при двухпроводном витке это будет первый верхний провод, при трехпроводном витке - второй средний провод, а при четырехпроводном витке - второй провод, считая сверху, и т. д.
Место изгиба каждого из параллельных проводов для перехода из катушки в катушку, как уже указывалось, предварительно изолируют электрокартоном. При изгибе для наружного перехода накладывают полоску на провод снизу, а для внутреннего - коробочку на провод сверху.
Места переходов, а соответственно и изгибов проводов, размечают в соответствии с чертежом обмотки в развернутом виде, где показаны и пронумерованы все рейки и пролеты и изображены все переходы и транспозиции. На чертеже наружные переходы показывают оплошными линиями, а внутренние - пунктирными.
При выполнении наружных переходов из неперекладной катушки в перекладную сначала изгибают верхний провод, а затем, идя последовательно сверху вниз, остальные. При этом смещают место изгиба для каждого последующего провода на одну рейку. Переходы всех проводов укладывают так, чтобы верхние провода переходили соответственно в нижние, а нижние - в верхние.
Для намотки перекладной катушки необходимо плавно спустить переходы с верха постоянной катушки вниз, на рейки к основанию временной катушки. Для этого применяют технологический клин, который набирают ступеньками из электрокартонных полос шириной, равной примерно ширине провода вместе с изоляцией. Длину клина в зависимости от числа параллельных проводов в витке берут равной 1/3-1/2 витка.
Клин должен иметь наибольшую высоту, равную радиальному размеру катушки минус один виток. Эта высота должна постепенно уменьшаться: под вторым переходом - на толщину одного провода, под третьим переходом - еще на толщину одного провода и т. д., а за пределами всех переходов равномерно и постепенно сойти на нет. После того как клин скомплектован его бандажируют вразгон по всей длине киперной лентой. Изготовленный таким образом клин подкладывают под переходы и плавно спускают их на рейки. Затем наматывают перекладную катушку.
При намотке первого витка перекладной катушки провода укладываются на рейки по небольшой спирали, причем начало витка несколько приподнято по сравнению с концом. Поэтому под конец первого витка также подкладывают на некоторой длине технологический клин, набранный из электрокартонных полос. При наличии этого клина второй виток ложится без усилий и равномерно на первый виток и все временные витки устойчиво лежат один на другом. После намотки временной катушки размечают места изгибов для внутренних переходов в следующую постоянную неперекладную катушку и выгибают все параллельные провода. Предварительно место изгиба каждого провода изолируют электрокартонной коробочкой, которую накладывают на провод сверху и закрепляют лентой.
При выполнении внутренних переходов из перекладной катушки в неперекладную сначала выгибают нижний провод, а затем, идя последовательно снизу вверх, все остальные. При этом смещают место изгиба для каждого последующего провода на одну рейку. Переходы всех проводов укладывают так, чтобы нижние провода переходили соответственно в верхние, а верхние-в нижние.
Между параллельными проводами, идущими с барабанов, наблюдаются небольшие линейные смещения вследствие разности в диаметрах этих проводов при намотке. Чтобы смещения в процессе перекладывания витков не увеличивались, провода зажимают ручными тисками или рукой. Затем производят перекладку витков,
наблюдая за тем, чтобы провода не смещались один относительно другого. Перекладывание витков из нескольких параллельных проходов производят так же, как и витков из одного провода.
Намотку непрерывных катушек производят двое рабочих; один находится по одну сторону станка, а второй - по другую.

Опоры и фундаменты на воздушные линии электропередач напряжением 35-110 кВ имеют значительный удельный вес как в части материалоёмкости, так и в стоимостном отношении. Достаточно сказать, что стоимость смонтированных опорных конструкций на этих воздушных линиях составляет, как правило, 60-70 % полной стоимости сооружения воздушных линий электропередач. Для линий, расположенных на промышленных предприятиях и непосредственно прилегающих к ним территориях, этот процент может быть ещё выше.

Опоры воздушной линии предназначены для поддержания проводов линий на определённом расстоянии от земли, обеспечивающем безопасность людей и надёжную работу линии.

Опоры воздушных линий электропередач делятся на анкерные и промежуточные. Опоры этих двух групп различаются способом подвески проводов.

Анкерные опоры полностью воспринимают тяжение проводов и тросов в смежных с опорой пролётах, т.е. служат для натяжения проводов. На этих опорах провода подвешиваются с помощью подвесных гирлянд. Опоры анкерного типа могут быть нормальной и облегчённой конструкции. Анкерные опоры значительно сложнее и дороже промежуточных и поэтому число их на каждой линии должно быть минимальным.

Промежуточные опоры не воспринимают тяжение проводов или воспринимают его частично. На промежуточных опорах провода подвешиваются с помощью поддерживающих гирлянд изоляторов, рис. 1.

Рис. 1. Схема анкерного пролёта воздушной линии и пролёта пересечения с железной дорогой

На базе анкерных опор могут выполняться концевые и транспозиционные опоры. Промежуточные и анкерные опоры могут быть прямыми и угловыми .

Концевые анкерные опоры, устанавливаемые при выходе линии с электростанции или на подходах к подстанции, находятся в наихудших условиях. Эти опоры испытывают одностороннее тяжение всех проводов со стороны линии, так как тяжение со стороны портала подстанции незначительно.

Промежуточные прямые опоры устанавливаются на прямых участках воздушных линий электропередач для поддержания проводов. Промежуточная опора дешевле и проще в изготовлении, чем анкерная, так как в нормальном режиме не испытывает усилий вдоль линии. Промежуточные опоры составляют не менее 80-90 % общего числа опор воздушных линий.

Угловые опоры устанавливаются в точках поворота линии. При углах поворота линии до 20 о применяют угловые опоры анкерного типа. При углах поворота линии электропередачи более 20 о – промежуточные угловые опоры.

На воздушных линиях электропередач применяются специальные опоры следующих типов: транспозиционные – для изменения порядка расположения проводов на опорах; ответвительные – для выполнения ответвлений от основной линии; переходные – для пересечения рек, ущелий и т.д.

Транспозицию применяют на линиях напряжением 110 кВ и выше протяжённостью более 100 км для того, чтобы сделать ёмкость и индуктивность всех трёх фаз цепи воздушных линий электропередач одинаковыми. При этом последовательно меняют на опорах взаимное расположение проводов по отношению друг к другу. Однако такое тройное перемещение проводов называют циклом транспозиции. Линия делится на три участка (шага), на которых каждый из трёх проводов занимает все три возможных положения, рис. 2.




Рис. 2.

В зависимости от количества подвешиваемых на опорах цепей опоры могут быть одноцепные и двухцепные . Провода располагаются на одноцепных линиях горизонтально или треугольником, на двухцепных опорах – обратной ёлкой или шестиугольником. Наиболее часто встречающиеся расположения проводов на опорах схематически изображены на рис. 3.




Рис. 3. :

а – расположение по вершинам треугольника; б - горизонтальное расположение; в – расположение обратной ёлкой

Там же указано и возможное расположение грозозащитных тросов. Расположение проводов по вершинам треугольника (рис. 3,а) широко распространено на линиях до 20-35 кВ и на линиях с металлическими и железобетонными опорами напряжением 35-330 кВ.

Горизонтальное расположение проводов применяют на линиях 35 кВ и 110 кВ на деревянных опорах и на линиях более высокого напряжения на других опорах. Для двухцепных опор более удобно с точки зрения монтажа расположение проводов по типу «обратная ёлка», но увеличивает массу опор и требует подвески двух защитных тросов.

Деревянные опоры широко применялись на воздушных линиях электропередач до 110 кВ включительно. Наиболее распространены сосновые опоры и несколько меньше опоры из лиственницы. Достоинства этих опор – малая стоимость (при наличии местной древесины) и простота изготовления. Основной недостаток – гниение древесины, особенно интенсивное в месте соприкосновения опоры с почвой.

Выполняются из стали специальных марок для линий 35 кВ и выше, требуют большого количества металла. Отдельные элементы соединяют сваркой или болтами. Для предотвращения окисления и коррозии поверхность металлических опор оцинковывают или периодически окрашивают специальными красками. Однако они обладают высокой механической прочностью и большим сроком службы. Устанавливают металлические опоры на железобетонных фундаментах. Эти опоры по конструктивному решению тела опоры могут быть отнесены к двум основным схемам – башенным или одностоечным , рис. 4, и портальным , рис. 5.а, по способу закрепления на фундаментах – к свободностоящим опорам, рис. 4 и 6, и опорам на оттяжках , рис. 5.а, б, в.

На металлических опорах высотой 50 м и более должны быть установлены лестницы с ограждениями, доходящими по вершины опоры. При этом на каждой секции опор должны быть выполнены площадки с ограждениями.



Рис. 4. :

1 – провода; 2 – изоляторы; 3 – грозозащитный трос; 4 – тросостойка; 5 – траверсы опоры; 6 – стойка опоры; 7 – фундамент опоры



Рис. 5. :

а) – промежуточная одноцепная на оттяжках 500 кВ; б) – промежуточная V -образная 1150 кВ; в) – промежуточная опора ВЛ постоянного тока 1500 кВ; г) – элементы пространственных решетчатых конструкций




Рис. 6. :

а) – промежуточная 220 кВ; б) – анкерная угловая 110 кВ

Железобетонные опоры выполняются для линий всех напряжений до 500 кВ. Для обеспечения необходимой плотности бетона применяют виброуплотнение и центрифугирование. Виброуплотнение производится различными вибраторами. Центрифугирование обеспечивает очень хорошее уплотнение бетона и требует специальных машин – цинтрифуг. На воздушных линиях электропередач 110 кВ и выше стойки опор и траверсы портальных опор – центрифугированные трубы, конические или цилиндрические. Железобетонные опоры долговечнее деревянных, отсутствует коррозия деталей, просты в эксплуатации и поэтому получили широкое распространение. Они имеют меньшую стоимость, но обладают большей массой и относительной хрупкостью поверхности бетона, рис. 7.



Рис. 7.

опоры : а) – со штыревыми изоляторами 6-10 кВ; б) – 35 кВ;

в) – 110 кВ; г) – 220 кВ

Траверсы одностоечных железобетонных опор – металлические оцинкованные.

Срок службы железобетонных и металлических оцинкованных или периодически окрашиваемых опор велик и достигает 50 лет и более.

Основными элементами ВЛ являются: опоры, провода, изоляторы, линейная арматура, грозозащитные тросы.

Для ВЛ используются металлические, железобетонные и деревянные опоры.

Для изготовления металлических опор применяют углеродистую и низколегированную стали. Для защиты от коррозии опоры оцинковывают или покрывают антикоррозийными лаками и красками. Такие опоры устанавливаются на ВЛ напряжением 35, 110, 220, 330 и 500 кВ (рис. 3.1).

Рис. 3.1. Двухцепная ВЛ-35 на металлических опорах

Железобетонные опоры из центрифугированного бетона кольцеобразного сечения применяют для линий напряжением 35, 110, 220 кВ. Железобетонные опоры из вибробетона прямоугольного или квадратного сечения применяют для линий напряжением 0,4, 6, 10 кВ (рис. 3.2).

Для деревянных опор используется лиственница зимней рубки, сосна, ель, пихта. Деревянные опоры с железобетонными приставками применяют для ВЛ 0,4, 6, 10, 35 и 110 кВ. Для защиты от гниения деревянные опоры пропитывают антисептиком, что увеличивает срок службы древесины в 3 раза.

Рис. 3.2. Сечения железобетонных опор:

а – центрифугированные; б – из вибробетона

По назначению опоры делятся на промежуточные (рис. 3.3) и анкерные (рис. 3.4). Промежуточные опоры устанавливают на прямых участках трассы и предназначены только для поддержания проводов на изоляторах. Они не воспринимают усилий вдоль воздушной линии. Анкерные опоры рассчитаны на одностороннее тяжение проводов в пролетах. Анкерные опоры устанавливают через каждые 3-5 км ВЛ. Если не устанавливать анкерные опоры, то в случае обрыва проводов в пролете все промежуточные опоры начнут падение друг за другом и вся ВЛ на несколько километров упадет. При наличии анкерной опоры падение опор на ней прекратится.

Рис. 3.3. Деревянные промежуточные опоры:

а – для линий 6, 10 кВ; б – для линий 35, 110 кВ; 1 – стойки; 2 – приставка (пасынок); 3 – бандаж; 4 – траверсы

Рис. 3.4. Анкерные опоры:

а – для ВЛ 35, 110 кВ; б – для ВЛ 6, 10 кВ

На анкерных опорах провода закрепляют жестко. Угловые опоры устанавливают в точках изменения направления ВЛ. При незначительных углах поворота (до 20°) эти опоры могут изготавливаться как промежуточные, при углах поворота от 20° до 90° их выполняют по типу анкерных опор. Концевые опоры устанавливают в конце линии перед подстанциями или вводами.

В линиях напряжением 6, 10, 35 кВ концевые и угловые опоры выполняются А-образными или АП-образными.

Воздушные линии могут быть одноцепные и двухцепные. Одноцепная ВЛ содержит на опоре одну цепь из трех проводов трехфазной сети, а двухцепная содержит две цепи.

Рис. 3.5. Транспозиция проводов ВЛ 110, 220 кВ:

1 , 2 – транспозиционные опоры

Транспозиционные анкерные опоры с дополнительными изоляторами осуществляют транспозицию проводов (рис. 3.5) на ВЛ напряжением 110, 220 кВ и выше. Транспозиция проводов необходима для выравнивания индуктивностей и емкостей и падения напряжения во всех фазах ВЛ при длине более 100 км таким образом, чтобы на одной трети длины каждая фаза занимала среднее положение.

Характеристики пролета ВЛ

Основные характеристики пролета: длина, габарит, стрела провеса (рис. 3.6).

Рис. 3.6. Характеристика пролета ВЛ:

а – при одинаковом уровне подвеса проводов; б – при разных уровнях;

– длина пролета; – габарит; – стрела провеса; – высота опоры

Длина пролета – расстояние между опорами; габарит – наименьшее расстояние от нижней точки провода до земли (воды, сооружения). Стрела провеса – расстояние от нижней точки провода до прямой, соединяющей точки подвеса. Зимой стрела провеса уменьшается, летом увеличивается.

Размеры ВЛ зависят от номинального напряжения (табл. 3.1).

Таблица 3.1

Размеры элементов конструкции ВЛ разных напряжений

Требования ПУЭ при сооружении ВЛ

Требования ПУЭ к ВЛ изложены на семидесяти шести страницах. Ниже приведены для примера только некоторые из них.

1. Наименьшие расстояния от проводов до земли (габарит) для ВЛ различных напряжений (табл. 3.2).

Таблица 3.2

*К населенной местности относятся города, поселки, дачные поселения, к ненаселенной – поля, пашни и т.п.

2. Нельзя строить ВЛ над стадионом, школой, детским садом, рынком.

3. Сечение проводов для ВЛ 6, 10 кВ марки АС необходимо принимать не менее 50 мм 2 .

4. В населенной местности для ВЛ 6, 10 кВ должна быть двойная привязка проводов к изоляторам.

Если при строительстве ВЛ будут допущены нарушения требований ПУЭ, то инспектор Ростехнадзора не даст разрешение на эксплуатацию данной ВЛ и потребует устранить нарушения.

Провода для воздушных линий электропередач

Для воздушных линий (ВЛ) электропередач используют голые многопроволочные алюминиевые (А) и сталеалюминевые (АС) провода. Например, провод А-50 содержит 7 алюминиевых проволок диаметром по 3 мм каждая. Площадь поперечного сечения одной проволоки мм 2 . суммарная площадь семи проволок мм 2 .

Расшифровка провода А-50: А – алюминиевый, 50 – площадь поперечного сечения провода, мм 2 . Провод А-50 выдерживает на разрыв силу кгс, масса 1 км составляет кг, сопротивление 1 км Ом. Провода марки А изготавливаются сечением от 16 до 800 мм 2 . Технические данные этих проводов представлены в табл. 3.3.

Таблица 3.3

Технические данные голых алюминиевых проводов марки А

Номинальное сечение, мм 2 Диаметр провода, мм Сопротивление 1 км при 20°С, Ом , Ом/км Число и диаметр проволок, мм Разрывное усилие, кгс Масса 1 км, кг
5,1 1,8 7х1,70
6,4 1,15 7х2,13
7,5 0,84 7х2,50
9,0 0,58 7х3,00
10,7 0,41 7х3,55
12,3 0,31 7х4,10
14,0 0,25 19х2,80
15,8 0,19 19х3,15
17,8 0,16 19х3,50
20,0 0,12 19х4,00
22,1 0,1 37х3,15

Провод АС-50/8 алюминиевый со стальным сердечником содержит 6 алюминиевых проволок диаметром по 3,2 мм и одну стальную проволоку диаметром 3,2 мм. Площадь поперечного сечения алюминиевой проволоки мм 2 . Суммарная площадь шести алюминиевых проволок мм 2 .

Площадь стальной проволоки мм 2 .

Расшифровка провода АС-50/8: А – алюминиевый, С – стальной, 50 – суммарная площадь поперечного сечения алюминиевых проволок, мм 2 , 8 – площадь сечения стального сердечника, мм 2 .

Провод АС-50/8 выдерживает на разрыв кгс, масса 1 км кг, сопротивление 1 км Ом. Провода марки АС изготавливаются сечением от 10 до 1000 мм 2 . Технические данные этих проводов представлены в табл. 3.4.

Таблица 3.4

Технические данные голых сталеалюминевых проводов марки АС

Номинальное сечение, (алюминий/ сталь), мм 2 Диаметр провода, мм Сопротивление 1 км при 20°С, Ом , Ом/км Количество и диаметр проволок, мм Разрывное усилие, кгс Масса 1 км, кг
алюминиевых стальных
10/1,8 4,5 6х1,50 1х1,50 42,7
16/2,7 5,6 1,78 6х1,85 1х1,85
25/4,2 6,9 1,15 6х2,30 1х2,30
35/6,2 8,4 0,78 6х2,80 1х2,80
50/8 9,6 0,6 6х3,20 1х3,20
70/11 11,4 0,42 6х3,80 1х3,80
70/72 15,4 0,42 18х2,20 19х2,20
95/16 13,5 0,3 6х4,5 1х4,5
95/141 19,8 0,32 24х2,20 37х2,20
120/19 15,2 0,24 26х2,40 7х1,85
120/27 15,4 0,25 30х2,20 7х2,20
150/19 16,8 0,21 24х2,80 7х1,85
150/24 17,1 0,20 26х2,70 7х2,10
150/34 17,5 0,21 30х2,50 7х2,50
185/24 18,9 0,154 24х3,15 7х2,10
185/29 18,8 0,159 26х2,98 7х2,30
185/43 19,6 0,156 30х2,80 7х2,80
185/128 23,1 0,154 54х2,10 37х2,10

При переходе ВЛ через железную дорогу, водные преграды, инженерные сооружения применяются усиленные провода марки АС. Например, провод АС-95/16 содержит одну стальную проволоку диаметром 4,5 мм площадью 16 мм 2 . Разрывное усилие кгс (3,4 тс), кг.

Провод АС-95/141 содержит стальной сердечник из 37 проволок диаметром по 2,2 мм каждая. Суммарная площадь поперечного сечения стального сердечника 141 мм 2 . Разрывное усилие кгс (18,5 тс), что в 5,4 раза больше чем у провода АС-95/16 с такой же площадью алюминиевых проволок. Масса 1 км провода АС-95/141 кг, в 3,5 раза тяжелее провода АС-95/16.

Провода марки АС прочнее проводов марки А примерно в 1,5 раза, но они при этом во столько же раз и тяжелее.

В электрических расчетах проводимость стального сердечника не учитывают, так как его проводимость составляет всего 4% от алюминиевого. Удельное сопротивление алюминия при 20ºС Ом·мм 2 /м, т.е. сопротивление 1 м провода сечением 1 мм 2 Ом. Удельное сопротивление железа (стали) Ом·мм 2 /м. Сопротивление железа в 3,57 раз больше, чем у алюминия (0,100/0,028=3,57). В проводе АС-50/8 площадь стального сердечника в 6,25 раз меньше, чем у алюминия (50/8 = 6,25). Сопротивление стального сердечника в 22,3 раза больше, чем алюминиевого (6,25·3,57 = 22,3), т.е. проводимость составляет 4% (1·100/22,3 = 4,4%).

Сталеалюминевые провода изготавливают с различным соотношением площадей сечений алюминиевой и стальной частей: для проводов нормальной прочности 6:1; для усиленных 4:1; для особо усиленных 1,5:1.

Провода с облегченными сердечниками имеют соотношение 8:1, особо облегченные (12-18):1.

Для увеличения продолжительности работы алюминиевых и сталеалюминевых проводов в течение всего срока службы (40 лет) их покрывают антикоррозионной защитной электросетевой смазкой ЗЭС.

Если в проводе марки А межпроволочные пазы заполнены антикоррозионной смазкой, то шифр обозначения провода АКП.

Если в проводе АС сердечник заполнен антикоррозионной смазкой, то шифр обозначения АСКС, при заполнении всего провода – АСКП.

Если в проводе АС сердечник обмотан полиэтиленовой пленкой, то шифр обозначения АСК.

ВЛ-35 кВ и выше выполняются сталеалюминевыми проводами облегченной конструкции (АСО) при толщине стенки гололеда до 20 мм и усиленной (АСУ) при толщине свыше 20 мм.

Провода из меди маркируются буквой М, например, М-50, где 50 – суммарная площадь поперечного сечения проволок.

Для грозозащитных тросов используют стальные оцинкованные многопроволочные провода марки ПС, например, ПС-25 (П – провод, С – стальной многопроволочный, 25 – суммарная площадь поперечного сечения проволок, табл. 3.5).

Таблица 3.5

Стальные оцинкованные провода марки ПС

Стальные однопроволочные провода марки ПСО изготавливаются с диаметрами 3,5, 4, 5 мм и обозначаются, например, ПСО-5 (П – провод, С – стальной, О – однопроволочный, 5 – диаметр, мм).

Строительная длина – это количество провода на барабане без разрыва. Например, длина провода А-35 на барабане 4000 м (4 км).

Провода марки АЖ представляют собой сплав алюминия с магнием и кремнием ().

Провода марки АС применяются для системообразующих и распределительных ВЛ напряжением 35, 110, 220 кВ и выше, где необходима повышенная прочность при воздействии ветровых нагрузках и гололеде.

Для внутри карьерных распределительных ВЛ-6(10) кВ рекомендуется принимать провод марки А. Он легче, мягче, с ним удобнее работать, легче монтировать. Провод А-120 кг/км в 1,6 раза легче провода АС-120/27 кг/км.

Самонесущие изолированные провода

Самонесущие изолированные провода (СИП) изготавливаются многопроволочными из алюминиевой проволоки и покрываются изоляцией из полиэтилена (LД, РЕ, ХLРЕ). Номинальное напряжение марки СИП-1 и СИП-2 до 1000 В, СИП-3 – 20 кВ.

Пример сечений: 1х16+1х25; 3х35+1х50; 4х16+1х25.

Провода СИП-3 одножильные сечением 50, 70, 95, 120, 150 мм 2 .

Достоинства СИП:

1. Алюминиевые провода не разрушаются коррозией.

2. СИП можно прокладывать по стенам зданий.

3. СИП безопаснее, снижается вероятность коротких замыканий.

4. СИП интенсивно внедряется в городских электрических сетях, заменяя голые провода марки А и АС.

Изоляторы

Изоляторы предназначены для изоляции проводов ВЛ от опор и для крепления их к опорам. Традиционный материалы для изготовления изоляторов – фарфор и стекло. Новый материал – полимеры. На рис. 3.7 показана гирлянда изоляторов из фарфора для ВЛ-110 и полимерный изолятор взамен данной гирлянды.

Изолятор состоит из изоляционного элемента и металлической арматуры для крепления изоляторов к опоре.

На ВЛ 0,4, 6, 10 кВ следует применять штыревые изоляторы, на ВЛ 35 кВ штыревые и подвесные, на ВЛ 110, 220 кВ и выше только подвесные. Подвесные изоляторы собирают в гирлянды из отдельных изоляторов при помощи специальной сцепной арматуры.

Рис. 3.7. Гирлянда изоляторов из фарфора и полимерный стержень

Число изоляторов в гирлянде в зависимости от напряжения ВЛ:

6, 10 кВ – 1 изолятор;

35 кВ – 3 изолятора;

110 кВ – 7 изоляторов;

220 кВ – 14 изоляторов.

Поддерживающие гирлянды располагаются вертикально на промежуточных опорах. Натяжные гирлянды располагаются почти горизонтально на анкерных опорах.

Изоляторы из стекла предпочтительнее фарфоровых. Во-первых, они прочнее фарфоровых и, во-вторых, легче отыскивать трещины и утечки тока.

Гасители вибраций

Для проводов характерны вибрация и пляска. Вибрация возникает при слабом ветре и представляет собой периодические колебания в вертикальной плоскости с частотой 5-50 Гц и с амплитудой до трех диаметров провода. Под ее действием возникают динамические переменные усилия, приводящие к разрыву проволочек в местах крепления.

Пляска возникает под действием порывистого ветра (5-20 м/с) на провода, покрытые гололедом. Частота колебаний составляет 0,2-0,4 Гц, амплитуда колебаний до 5 м. Это приводит к схлестыванию проводов и поломке опор.

Для защиты проводов от колебаний в вертикальной плоскости используются гасители вибраций. При сечении проводов А35 – А95, АС25 – АС70 шпилевого типа. При сечениях А120 и АС95 и более в виде стального троса с двумя чугунными грузами (рис. 3.8).

Рис. 3.8. Гаситель вибрации проводов

Масса льда в 6,4 раза больше массы самого провода (1775/276=6,4).

Территория России по гололедности разбита на 5 районов (табл. 3.6).

Таблица 3.6

Иркутская область относится ко II району.

Транспозиция (в электротехнике) Транспозиция в электротехнике, изменение взаимного расположения проводов отдельных фаз по длине воздушной линии электропередачи (ЛЭП) для уменьшения нежелательного влияния ЛЭП друг на друга и на близлежащие линии связи. При Т. вся ЛЭП условно разделяется на участки, число которых кратно числу фаз. При переходе с одного участка на другой фазы меняются местами так, что каждая из них попеременно занимает положение остальных. Длина участка определяется условиями надёжной работы ЛЭП, стоимостью её сооружения и требованиями симметрии её токов и напряжений, возрастающей в результате выравнивания значений индуктивности и ёмкости фаз ЛЭП при Т. Выполняют Т. на ЛЭП длиной свыше 100 км и напряжением от 110 кв и выше. Полный цикл Т. фаз осуществляется на длине не свыше 300 км .

Лит.: Мельников Н. А., Электрические сети и системы, М., 1975.

Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Транспозиция (в электротехнике)" в других словарях:

    - (транспонирование, транспонировка; от лат. trānspositiō «перекладывание») многозначный термин. Транспозиция в комбинаторике перестановка, которая меняет местами только два элемента. Транспозиция в генетике перемещение… … Википедия

    транспозиция (проводов) ЛЭП - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN transmission line transposition …

    транспозиция (фазных) проводов - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN conductor transposition … Справочник технического переводчика

    транспозиция в пролёте - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN span transpositionspan type transposition … Справочник технического переводчика

    транспозиция проводов ВЛ - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN open wire transposition … Справочник технического переводчика

    транспозиция фаз - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN phase transposition … Справочник технического переводчика

    I Транспозиция (от позднелат. transpositio перестановка) (транспонировка) в музыке, перенос всех звуков музыкального произведения на определённый интервал вверх или вниз. Т. на любой интервал, кроме октавы, меняет тональность. Цель Т.… … Большая советская энциклопедия

    обратная транспозиция витков (обмотки) - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN inverted turn transposition … Справочник технического переводчика

    скрещивание проводов - транспозиция — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы транспозиция EN cross connection … Справочник технического переводчика

ОБЛАСТЬ ПРИМЕНЕНИЯ, ОПРЕДЕЛЕНИЯ

2.5.1. Настоящая глава Правил распространяется на ВЛ выше 1 кВ и до 500 кВ, выполняемые неизолированными проводами. Настоящая глава не распространяется на электрические воздушные линии, сооружение которых определяется специальными правилами, нормами и постановлениями (контактные сети электрифицированных железных дорог, трамвая, троллейбуса, сигнальные линии автоблокировки и т. д.). Кабельные вставки в ВЛ должны выполняться в соответствии с требованиями, приведенными в гл. 2.3 и 2.5.69.

2.5.2. Воздушной линией электропередачи выше 1 кВ называется устройство для передачи электроэнергии по проводам, расположенным на открытом воздухе и прикрепленным при помощи изоляторов и арматуры к опорам или кронштейнам и стойкам на инженерных сооружениях (мостах, путепроводах и т. п.).
За начало и конец ВЛ принимаются линейные порталы или линейные вводы распределительных устройств, а для ответвлений - ответвительная опора и линейный портал или линейный ввод распределительного устройства.
2.5.3. Нормальным режимом ВЛ выше 1 кВ называется состояние ВЛ при необорванных проводах и тросах.
Аварийным режимом ВЛ выше 1 кВ называется состояние ВЛ при оборванных одном или нескольких проводах или тросах.
Монтажным режимом ВЛ выше 1 кВ называется состояние в условиях монтажа опор, проводов и тросов.
Габаритным пролетом называется пролет, длина которого определяется нормированным вертикальным габаритом от проводов до земли при устройстве опор на идеально ровной поверхности.
Ветровым пролетом называется длина участка ВЛ, давление ветра на провода или тросы с которого воспринимается опорой.
Весовым пролетом называется длина участка ВЛ, вес проводов или тросов которого воспринимается опорой.
Габаритной стрелой провеса провода называется наибольшая стрела провеса в габаритном пролете.
2.5.4. Населенной местностью называются земли городов в пределах городской черты в границах их перспективного развития на 10 лет, пригородные и зеленые зоны, курорты, земли поселков городского типа в пределах поселковой черты и сельских населенных пунктов в пределах черты этих пунктов.
Ненаселенной местностью называются земли единого государственного земельного фонда, за исключением населенной и труднодоступной местности. К ненаселенной местности настоящие Правила относят незастроенные местности, хотя бы и часто посещаемые людьми, доступные для транспорта и сельскохозяйственных машин, сельскохозяйственные угодья, огороды, сады, местности с отдельными редко стоящими строениями и временными сооружениями.
Труднодоступной местностью называется местность, недоступная для транспорта и сельскохозяйственных машин.
Застроенной местностью в настоящих Правилах называются территории городов, поселков и сельских населенных пунктов в границах фактической застройки, защищающие ВЛ с обеих сторон от поперечных ветров.
2.5.5. Большими переходами называются пересечения судоходных рек, судоходных проливов или каналов, на которых устанавливаются опоры высотой 50 м и более, а также пересечения любых водных пространств с пролетом пересечения более 700 м независимо от высоты опор ВЛ.
ОБЩИЕ ТРЕБОВАНИЯ 2.5.6. Механический расчет проводов и тросов ВЛ производится по методу допускаемых напряжений, расчет изоляторов и арматуры - по методу разрушающих нагрузок. По обоим методам расчеты производятся на нормативные нагрузки. Расчет опор и фундаментов ВЛ производится по методу расчетных предельных состояний. Применение других методов расчета в каждом отдельном случае должно быть обосновано в проекте.
В настоящей главе приведены условия для определения нормативных нагрузок. Указания по определению расчетных нагрузок, используемых в расчетах строительных конструкций ВЛ (опор и фундаментов), даны в приложении к настоящей главе.
Коэффициенты перегрузки и расчетные положения, касающиеся специфических условий расчета конструкций ВЛ, приводятся в приложении к настоящей главе.
2.5.7. На ВЛ 110-500 кВ длиной более 100 км для ограничения несимметрии токов и напряжений должен выполняться один полный цикл транспозиции. На двухцепных ВЛ схемы транспозиции должны быть одинаковыми. Шаг транспозиции по условию влияний на линии связи не нормируется.
В электрических сетях 110-500 кВ, содержащих несколько участков ВЛ длиной менее 100 км каждый, транспозиция проводов выполняется непосредственно на промежуточных подстанциях (на шинах, в пролете между концевой опорой и порталом подстанции или на концевой опоре). При этом транспозиция должна осуществляться так, чтобы суммарные длины участков ВЛ с различным чередованием фаз были примерно равны.
В электрических сетях до 35 кВ рекомендуется производить транспозицию фаз на подстанциях так, чтобы суммарные длины участков с различным чередованием фаз были примерно равны.
2.5.8. Обслуживание ВЛ должно предусматриваться с ремонтно-производственных баз (РПБ) и ремонтно-эксплуатационных пунктов (РЭП).
Размещение РПБ и РЭП, выбор их типа, оснащение средствами механизации работ и транспорта должны производиться на основании схем организации эксплуатации, утвержденных в установленном порядке, или действующих нормативов.
РПБ и РЭП должны оборудоваться средствами связи в соответствии со схемой организации эксплуатации, утвержденной в установленном порядке.
Кроме РПБ и РЭП для эксплуатации ВЛ в труднодоступной местности на трассе ВЛ должны быть предусмотрены упрощенные пункты обогрева, количество и расположение которых должны быть обоснованы в проекте.
2.5.9. При ремонтно-производственных базах предусматривается строительство производственно-жилой площади для оперативного и ремонтно-эксплуатационного персонала ВЛ. Объем строительства производственно-жилой площади определяется в соответствии со схемой организации эксплуатации энергосистемы, утвержденной в установленном порядке, или действующими нормативами.
Производственно-жилые помещения размещаются, как правило, на территории подстанций или РПБ и должны быть обеспечены местной телефонной или радиосвязью с возможностью выхода на ближайшую телефонную сеть Министерства связи СССР, вызывной сигнализацией, а также средствами радиофикации.
2.5.10. Укомплектование сетевых предприятий и их структурных подразделений транспортными средствами и средствами механизации работ для эксплуатации и ремонта ВЛ производится в соответствии с перспективной схемой организации эксплуатации, утвержденной в установленном порядке, или действующими нормативами.
Автомашины и самоходные механизмы, предназначенные для эксплуатации и ремонта ВЛ, должны быть оборудованы средствами двусторонней радиосвязи с РПБ.
2.5.11. Численность персонала, объем производственно-жилых помещений РПБ и РЭП, а также количество транспортных средств и механизмов, необходимых для эксплуатации, определяются в соответствии с действующими нормативными документами.
2.5.12. К ВЛ 110 кВ и выше должен быть обеспечен в любое время года подъезд на возможно близкое расстояние, но не далее чем на 0,5 км от трассы ВЛ. Для проезда вдоль трассы указанных ВЛ и для подъезда к ним должна быть расчищена от насаждений, пней, камней и т. п. полоса земли шириной не менее 2,5 м. Исключения допускаются лишь на участках ВЛ:
проходящих по топким болотам и сильно пересеченной местности, где проезд невозможен. В этих случаях необходимо выполнять вдоль трассы ВЛ пешеходные тропки с мостиками шириной не менее 0,4 м или насыпные земляные дорожки шириной не менее 0,8 м;
проходящих по территориям, занятым под садовые и другие ценные культуры и снегозащитные насаждения вдоль железных и шоссейных дорог.
2.5.13. Опоры ВЛ рекомендуется устанавливать вне зоны размыва берегов с учетом возможных перемещений русел и затопляемости района, а также вне мест, где могут быть потоки дождевых и других вод, ледоходы (овраги, поймы рек и др.).
При невозможности установки опор ВЛ вне указанных опасных зон должны быть выполнены мероприятия по защите опор от повреждений (устройство специальных фундаментов, укрепление берегов, откосов, склонов, устройство водоотводных канав, ледорезов или иных сооружений и т. п.).
Установка опор в зоне предполагаемых грязекаменных селевых потоков запрещается.
Наибольший горизонт ледохода и уровня высоких (паводковых) вод принимается с обеспеченностью 2% (повторяемость 1 раз в 50 лет) для ВЛ 330 кВ и ниже 1% (повторяемость 1 раз в 100 лет) или по историческому наблюдаемому уровню при наличии соответствующих данных для ВЛ 500 кВ.
2.5.14. При прохождении ВЛ с деревянными опорами по лесам, сухим болотам и другим местам, где возможны низовые пожары, для защиты опор должна быть предусмотрена одна из следующих мер:
устройство вокруг каждой стойки опоры на расстоянии 2 м от нее канавы глубиной 0,4 и шириной 0,6 м;
уничтожение химическим или другим способом травы и кустарника и очистка от них площадки радиусом 2 м вокруг каждой опоры;
применение железобетонных приставок (пасынков); при этом расстояние от земли до нижнего торца стойки должно быть не менее 1 м.
Для районов многолетней мерзлоты в местах, где возможны низовые пожары, расстояние от деревянной опоры до канавы и размер зоны химической обработки растительности увеличиваются до 5 м.
Установка деревянных опор ВЛ 110 кВ и выше в местах, где возможны торфяные пожары, не рекомендуется.
2.5.15. На опорах ВЛ на высоте 2,5-3,0 м должны быть нанесены следующие постоянные знаки:
порядковый номер - на всех опорах;
номер ВЛ или ее условное обозначение - на концевых опорах, первых опорах ответвлений от линии, на опорах в месте пересечения линий одного напряжения, на опорах, ограничивающих пролет пересечения с железными дорогами и автомобильными дорогами I-V категорий, а также на всех опорах участков трассы с параллельно идущими линиями, если расстояние между их осями - менее 200 м. На двухцепных и многоцепных опорах ВЛ, кроме того, должна быть обозначена соответствующая цепь;
расцветка фаз - на ВЛ 35 кВ и выше на концевых опорах, опорах, смежных с транспозиционными, и на первых опорах ответвлений от ВЛ;
предупреждающие плакаты - на всех опорах ВЛ в населенной местности;
плакаты, на которых указаны расстояния от опоры ВЛ до кабельной линии связи, - на опорах, установленных на расстоянии менее половины высоты опоры до кабелей связи;
информационные знаки, на которых указаны ширина охранной зоны ВЛ и номер телефона владельца ВЛ. (смотри в приложении "Требования к информационным знакам и их установке")
2.5.16. Металлические опоры и подножники, выступающие металлические части железобетонных опор и все металлические детали деревянных и железобетонных опор ВЛ должны быть защищены от коррозии путем оцинковки или окраски стойким покрытием. Очистка, грунтовка и окраска должны производиться только в заводских условиях. На трассе следует производить лишь повторную окраску поврежденных мест.
2.5.17. В соответствии с "Правилами маркировки и светоограждения высотных препятствий" на приаэродромных территориях и воздушных трассах в целях обеспечения безопасности полетов самолетов опоры ВЛ, которые по своему расположению или высоте представляют аэродромные или линейные препятствия для полетов самолетов, должны иметь сигнальное освещение (светоограждение) и дневную маркировку (окраску), выполненные в соответствии со следующими условиями:
1. Опоры ВЛ должны иметь световое ограждение на самой верхней части (точке) и ниже через каждые 45 м. Расстояния между промежуточными ярусами огней, как правило, должны быть одинаковыми.
2. В каждом ряду светоограждения опоры должно устанавливаться не менее двух огней, размещенных на двух внешних сторонах опоры и работающих одновременно или по одному при наличии надежного автоматического устройства для включения резервного огня при выходе из строя основного огня.
3. Заградительные огни должны быть установлены так, чтобы их можно было наблюдать со всех направлений и в пределах от зенита до 5° ниже горизонта.
4. Средства светового ограждения аэродромных препятствий по условиям электроснабжения относятся к электроприемникам I категории. В отдельных случаях допускается электроснабжение заградительных огней по одной линии электропередачи при полной надежности ее работы.
5. Включение и отключение светового ограждения препятствий в районе аэродрома должны производиться владельцами ВЛ и командно-диспетчерским пунктом аэродрома по заданному режиму работы.
Допускается применение надежных автоматических устройств для включения и отключения заградительных огней. На случай отказа в работе этих устройств следует предусматривать возможность включения заградительных огней вручную.
6. Для обеспечения удобного и безопасного обслуживания должны предусматриваться площадки у мест размещения сигнальных огней и оборудования, а также лестницы для доступа к этим площадкам. Для этих целей следует использовать площадки и лестницы, имеющиеся на опорах ВЛ.
7. Для целей дневной маркировки опоры со световым ограждением должны быть окрашены в два цвета - красный (оранжевый) и белый - полосами шириной до 6 м в зависимости от высоты опоры. Число полос должно быть не менее трех, причем первую и последнюю полосы окрашивают в красный (оранжевый) цвет.
8. Определение того, к какому роду препятствий относится конкретная опора ВЛ, расчет высоты маркировки и светового ограждения, определение других требований, предъявляемых к выполнению светоограждения и дневной маркировки, а также согласование требований с органами гражданской авиации осуществляются в соответствии с "Правилами маркировки и светоограждения высотных препятствий".
2.5.18. Для определения мест повреждений на ВЛ 110 кВ и выше должны быть предусмотрены специальные приборы, устанавливаемые на подстанциях. При прохождении этих ВЛ в районах, где может быть гололед с толщиной стенки 15 мм и более, рекомендуется предусматривать устройства, сигнализирующие о появлении гололеда (см. также 2.5.19).
2.5.19. Для ВЛ, проходящих в районах с толщиной стенки гололеда 20 мм и более, а также в местах с частыми образованиями гололеда или изморози в сочетании с сильными ветрами и в районах с частотой и интенсивной пляской проводов, рекомендуется предусматривать плавку гололеда на проводах. Плавка гололеда на тросах ВЛ должна предусматриваться в тех случаях, когда возможно опасное приближение освобождающихся от гололеда проводов к тросам, покрытым гололедом.
При обеспечении плавки гололеда без перерыва электроснабжения потребителей нормативная толщина стенки гололеда может быть снижена на 15 мм, при этом расчетная толщина стенки гололеда должна быть не менее 15 мм.
На ВЛ с плавкой гололеда должны быть предусмотрены устройства, сигнализирующие о появлении гололеда. При выборе установок сигнализатора гололеда следует учитывать необходимое время от поступления сигнала до начала плавки в соответствии с расчетными условиями, принятыми для ВЛ.
2.5.20. Трасса ВЛ должна выбираться по возможности кратчайшей. В районах с большими отложениями гололеда, сильными ветрами, лавинами, оползнями, камнепадами, болотами и т. п. необходимо при проектировании предусматривать по возможности обходы особо неблагоприятных мест, что должно быть обосновано сравнительными технико-экономическими расчетами.
КЛИМАТИЧЕСКИЕ УСЛОВИЯ 2.5.21. Определение расчетных климатических условий, интенсивности грозовой деятельности и пляски проводов для расчета и выбора конструкций ВЛ должно производиться на основании карт климатического районирования с уточнением по региональным картам и материалам многих наблюдений гидрометеорологических станций и метеопостов управлений гидрометеослужбы и энергосистем за скоростью ветра, интенсивностью и плотностью гололедно-изморозевых отложений и температурой воздуха, грозовой деятельностью и пляской проводов в зоне трассы сооружаемой ВЛ.
При обработке данных наблюдений должно быть учтено влияние микроклиматических особенностей на интенсивность гололедообразования и на скорость ветра в результате действия как природных условий (пересеченный рельеф местности, высота над уровнем моря, наличие больших озер и водохранилищ, степень залесенности и т. д.), так и существующих или проектируемых инженерных сооружений (плотины и водосбросы, пруды-охладители, полосы сплошной застройки и т. п.).
Для ВЛ, сооружаемых в малоизученных районах*, значения скоростного напора ветра и толщины стенки гололеда рекомендуется принимать на район выше.
* К малоизученным районам относятся районы, где:
1) Отсутствуют метеостанции либо есть метеостанции, но их количество недостаточно или они нерепрезентативны.
2) Отсутствует опыт эксплуатации.
2.5.22. Максимальные нормативные скоростные напоры ветра и толщину гололедно-изморозевых отложений определяют, исходя из их повторяемости 1 раз в 15 лет для ВЛ 500 кВ, 1 раз в 10 лет для ВЛ 6-330 кВ и 1 раз в 5 лет для ВЛ 3 кВ и ниже.
2.5.23. Максимальные нормативные скоростные напоры для высоты до 15 м от земли принимаются по табл. 2.5.1 в соответствии с картой районирования территории СССР по скоростным напорам ветра (рис. 2.5.1-2.5.4), но не ниже 40 даН/м² для ВЛ 6-330 кВ и 55 даН/м² для ВЛ 500 кВ.
Рис. 2.5.1. Карта районирования территории СНГ по скоростным напорам ветра. Лист 1
Рис. 2.5.2. Карта районирования территории СНГ по скоростным напорам ветра. Лист 2
Рис. 2.5.3. Карта районирования территории СНГ по скоростным напорам ветра. Лист 3
Рис. 2.5.4. Карта районирования территории СНГ по скоростным напорам ветра. Лист 4
2.5.24. Скоростной напор ветра на провода ВЛ определяется по высоте расположения приведенного центра тяжести всех проводов, скоростной напор на тросы - по высоте расположения центра тяжести тросов. При расположении центра тяжести на высоте до 15 м скоростной напор принимается по табл. 2.5.1.
При высоте более 15 м скоростной напор определяется путем умножения значения напора, указанного в табл. 2.5.1 для высоты до 15 м, на поправочный коэффициент по табл. 2.5.2, учитывающий возрастание скорости ветра по высоте.

Таблица 2.5.1. Максимальный нормативный скоростной напор ветра на высоте до 15 м от земли


Примечания: 1. Для повторяемости 1 раз в 10 лет и 1 раз в 15 лет в таблице даны унифицированные значения скоростных напоров и скоростей ветра.
2. Значения скоростных напоров при их уточнении на основании обработки фактически замеренных скоростей определяются по формуле
,
где - скорость ветра на высоте 10 м над поверхностью земли (при двухминутном интервале усреднения), превышаемая в среднем один раз в 5, 10 или 15 лет; - поправочный коэффициент к скоростям ветра, полученным из обработки наблюдений по флюгеру, принимается не более единицы; при использовании малоинерционных анемометров коэффициент принимается равным единице.
Полученные значения применяются до высоты 15 м. Рекомендуется округлять их до ближайшего указанного в таблице значения.
Высота расположения приведенного центра тяжести проводов или тросов определяется для габаритного пролета по формуле
,
где - средняя высота крепления провода к изоляторам или средняя высота крепления тросов на опоре, отсчитываемая от отметки земли в местах установки опор, м; - стрела провеса провода или троса, условно принимаемая наибольшей (при высшей температуре или гололеде без ветра), м.
Полученные значения скоростных напоров ветра должны быть округлены до целого числа.
2.5.25. Скоростной напор ветра на провода и тросы больших переходов через водные пространства определяется по указаниям 2.5.24, но с учетом следующих дополнительных требований:
1. Для перехода, состоящего из одного пролета, высота расположения приведенного центра тяжести проводов или тросов определяется по формуле
,
где - высота крепления тросов или средняя высота крепления проводов к изоляторам на опорах перехода, отсчитываемая от меженного уровня реки или нормального горизонта пролива, канала, водохранилища, м; - наибольшая стрела провеса провода или троса перехода, м.

Таблица 2.5.2. Поправочный коэффициент на возрастание скоростных напоров ветра по высоте

Высота, м Коэффициент Высота, м Коэффициент
До 15 1,0 100 2,1
20 1,25 200 2,6
40 1,55 350 и выше 3.1
60 1,75

Примечание. Для промежуточных высот значения поправочных коэффициентов определяются по линейной интерполяции.
2. Для перехода, состоящего из нескольких пролетов, скоростной напор ветра на провода или тросы определяется для высоты , соответствующей средневзвешенному значению высот приведенных центров тяжести проводов или тросов во всех пролетах перехода и вычисляемой по формуле
,
где - высоты приведенных центров тяжести проводов или тросов над меженным уровнем реки или нормальным горизонтом пролива, канала, водохранилища в каждом из пролетов, м. При этом если пересекаемое водное пространство имеет высокий, незатопляемый берег, на котором расположены как переходные, так и смежные с ними опоры, то высоты приведенных центров тяжести в пролете, смежном с переходным, отсчитываются от отметки земли в этом пролете; - длины пролетов, входящих в переход, м.
2.5.26. Скоростной напор ветра на конструкции опор определяется с учетом его возрастания по высоте. Для отдельных зон высотой не более 15 м значение поправочных коэффициентов следует принимать постоянным, определяя его по высоте средних точек соответствующих зон, отсчитываемой от отметки земли в месте установки опоры.
2.5.27. Для участков ВЛ, сооружаемых в застроенной местности, максимальный нормативный скоростной напор ветра допускается уменьшать на 30% (скорость ветра - на 16%) по сравнению с принятым для района прохождения ВЛ, если средняя высота окружающих зданий составляет не менее 2/3 высоты опор. Такое же уменьшение скоростного напора ветра допускается для ВЛ, трасса которых защищена от поперечных ветров (например, в лесных массивах заповедников, в горных долинах и ущельях).
2.5.28. Для участков ВЛ, находящихся в местах с сильными ветрами (высокий берег большой реки, резко выделяющаяся над окружающей местностью возвышенность, долины и ущелья, открытые для сильных ветров, прибрежная полоса больших озер и водохранилищ в пределах 3-5 км), при отсутствии данных наблюдений максимальный скоростной напор следует увеличивать на 40% (скорость ветра - на 18%) по сравнению с принятым для данного района. Полученные цифры рекомендуется округлять до ближайшего значения, указанного в табл. 2.5.1.
2.5.29. При расчете проводов и тросов на ветровые нагрузки направление ветра следует принимать под углом 90°, 45° и 0° к ВЛ. При расчете опор следует принимать направление ветра под углом 90 и 45° к ВЛ.
2.5.30. Нормативная ветровая нагрузка P , даН, на провода и тросы, действующая перпендикулярно проводу (тросу), для каждого расчетного режима определяется по формуле
,
где - коэффициент, учитывающий неравномерность скоростного напора ветра по пролету ВЛ, принимаемый равным: 1 при скоростном напоре ветра до 27 даН/м² , 0,85 при 40 даН/м² , 0,75 при 55 даН/м² , 0,7 при 76 даН/м² и более (промежуточные значения определяются линейной интерполяцией); K l - коэффициент, учитывающий влияние длины пролета на ветровую нагрузку, равный 1,2 при длине пролета до 50 м, 1,1 при 100 м, 1,05 при 150 м, 1 при 250 м и более (промежуточные значения K l определяются интерполяцией); C k - коэффициент лобового сопротивления, принимаемый равным: 1,1 для проводов и тросов диаметром 20 мм и более, свободных от гололеда, 1,2 для всех проводов и тросов, покрытых гололедом, и для проводов и тросов диаметром менее 20 мм, свободных от гололеда; q - нормативный скоростной напор ветра в рассматриваемом режиме, даН/м² ; - площадь диаметрального сечения провода, м² (при гололеде с учетом нормативной толщины стенки гололеда); - угол между направлением ветра и осью ВЛ.
При измерении скорости ветра по приборам с 10-минутным интервалом осреднения в приведенную формулу следует вводить коэффициент 1,3.
2.5.31. Нормативная масса гололедных отложений на проводах и тросах определяется, исходя из цилиндрической формы отложений с плотностью 0,9 г/см 3 .
Толщина стенки гололеда, приведенная к высоте 10 м от земли и к диаметру провода 10 мм при повторяемости 1 раз в 5 и 10 лет, определяется в соответствии с картой районирования территории СССР по гололеду (рис. 2.5.5-2.5.10) и табл. 2.5.3. Толщина стенки гололеда может быть уточнена на основании обработки многолетних наблюдений.
Рис. 2.5.5. Карта районирования территории СНГ по толщине стенки гололеда. Лист 1
Рис. 2.5.6. Карта районирования территории СНГ по толщине стенки гололеда. Лист 2
Рис. 2.5.7. Карта районирования территории СНГ по толщине стенки гололеда. Лист 3
Рис. 2.5.8. Карта районирования территории СНГ по толщине стенки гололеда. Лист 4
Рис. 2.5.9. Карта районирования территории СНГ по толщине стенки гололеда. Лист 5
Рис. 2.5.10. Карта районирования территории СНГ по толщине стенки гололеда. Лист 6

Таблица 2.5.3. Нормативная толщина стенки гололеда для высоты 10 м над поверхностью земли


Толщина стенки гололеда с повторяемостью 1 раз в 15 лет в I-IV районах по гололеду, а также с любой повторяемостью в особых районах по гололеду должна приниматься на основании обработки данных фактических наблюдений.
Принимаемая в расчетах толщина стенки гололеда для повторяемости один раз в 5 и 10 лет должна быть не менее 5 мм, а для повторяемости 1 раз в 15 лет - не менее 10 мм.
При высоте расположения приведенного центра тяжести проводов до 25 м поправки на толщину стенки гололеда в зависимости от высоты и диаметра проводов и тросов не вводятся.
При высоте расположения приведенного центра тяжести проводов более 25 м толщина стенки гололеда вычисляется в соответствии со СНиП 2.01.07-85 "Нагрузки и воздействия" Госстроя России, причем высота для определения поправочного коэффициента принимается в соответствии с указаниями 2.5.25 такой же, как для вычисления скоростного напора ветра. При этом исходную толщину стенки гололеда (для высоты 10 м и диаметра 10 мм) следует принимать без увеличения, предусмотренного 2.5.32.
Толщина стенки гололеда до 22 мм округляется до ближайшего значения, кратного 5 мм, а толщина более 22 мм - до 1 мм.
2.5.32. Для участков ВЛ, проходящих по плотинам гидроэлектростанций и вблизи прудов-охладителей, при отсутствии данных наблюдений следует принимать толщину стенки гололеда на 5 мм больше, чем для всей линии.
2.5.33. Расчетные температуры воздуха принимаются одинаковыми для ВЛ всех напряжений по данным фактических наблюдений и округляются до значений, кратных пяти.
2.5.34. Расчет ВЛ по нормальному режиму работы необходимо производить для следующих сочетаний климатических условий:
1) высшая температура, ветер и гололед отсутствуют.
2) низшая температура, ветер и гололед отсутствуют.
3) среднегодовая температура , ветер и гололед отсутствуют.
4) провода и тросы покрыты гололедом, температура минус 5°С, ветер отсутствует.
5) максимальный нормативный скоростной напор ветра , температура минус 5°С, гололед отсутствует.
6) провода и тросы покрыты гололедом, температура минус 5°С, скоростной напор ветра 0,25 (скорость ветра 0,5 ). В районах с толщиной стенки гололеда 15 мм и более скоростной напор ветра при гололеде должен быть не менее 14 даН/м² (скорость ветра - не менее 15 м/с).
7) Фактические сочетания скоростных напоров ветра и размеров отложений гололеда на проводах и тросах при температуре минус 5° С в режимах:
7.1. Максимальное отложение гололеда на проводах и тросах и скоростной напор ветра при этом отложении.
7.2. Максимальный скоростной напор ветра и отложения гололеда на проводах и тросах при этом скоростном напоре.
Нагрузки по пунктам 7.1. и 7.2 определяются по региональным картам гололедно-ветровых нагрузок. При отсутствии региональных карт значения нагрузок определяются путем обработки соответствующих метеоданных по "Методике расчета и построения региональных карт результирующей гололедно-ветровой нагрузки ВЛ" и по "Методике разработки региональных карт нормативных районов ветровых нагрузок при гололеде для проектирования и эксплуатации ВЛ", разработанных ВНИИЭ и утвержденных Главтехуправлением Минэнерго СССР, при условии, что для характеристики климатических условий на 100 км ВЛ имеется 2 и более репрезентативных метеорологических станций с рядами наблюдений за фактическими сочетаниями отложений и наблюдаемых при них скоростей ветра.
В тех случаях, когда определение нагрузок не представляется возможным, расчет ВЛ на воздействие гололедно-ветровых нагрузок следует производить на условия согласно пункту 6. При этом скоростной напор ветра при гололеде следует принимать не более 30 даН/м 2 (V=22 м/с).
При расчете ВЛ по пп.6 и 7.1 в районах с нормативной толщиной стенки гололеда до 10 мм соответствующий скоростной напор ветра при гололеде должен быть не менее 6,25 даН/м 2 (V = 10 м/с), а в районах с нормативной толщиной стенки гололеда 15 мм и более - не менее 14,0 даН/м 2 (V = 15 м/с).
Для районов со среднегодовой температурой минус 5° С и ниже температуру в пп. 4, 5, 6 и 7 следует принимать равной минус 10° С.
2.5.35. Расчет ВЛ по аварийному режиму работы необходимо производить для следующих сочетаний климатических условий:
1. Среднегодовая температура , ветер и гололед отсутствуют.
2. Низшая температура , ветер и гололед отсутствуют.
3. Провода и тросы покрыты гололедом, температура минус 5°С, ветер отсутствует.
4. Провода и тросы покрыты гололедом, температура минус 5°С, скоростной напор ветра 0,25 .
2.5.36. При проверке опор ВЛ по условиям монтажа необходимо принимать следующие сочетания климатических условий: температура минус 15°С, скоростной напор ветра на высоте до 15 м от земли 6,25 даН/м² , гололед отсутствует.
2.5.37. При расчете приближений токоведущих частей к элементам опор ВЛ и сооружений необходимо принимать следующие сочетания климатических условий:
1. При рабочем напряжении: максимальный нормативный скоростной напор ветра , температура минус 5°С (см. также 2.5.34).
2. При грозовых и внутренних перенапряжениях: температура плюс 15°С, скоростной напор (), но не менее 6,25 даН/м² .
3. Для обеспечения безопасного подъема на опору под напряжением: температура минус 15°С, ветер и гололед отсутствуют.
Значение принимается таким же, как для определения ветровой нагрузки на провода.
Расчет приближений по п. 2 должен производиться также при отсутствии ветра.
Угол отклонения проводов и тросов определяется по формуле
,
где - коэффициент, учитывающий динамику колебаний провода при его отклонениях и принимаемый равным: 1 при скоростном напоре ветра до 40 даН/м² , 0,95 при 45 даН/м² , 0,9 при 55 даН/м² , 0,85 при 65 даН/м² , 0,8 при 80 даН/м² и более (промежуточные значения определяются линейной интерполяцией); - нормативная ветровая нагрузка на провод, даН; - нагрузка на гирлянду от веса провода, даН; - вес гирлянды изоляторов, даН.
Диаметр проводов, их сечение и количество в фазе, а также расстояние между проводами расцепленной фазы определяются расчетом.
2.5.39. По условиям механической прочности на ВЛ должны применяться многопроволочные алюминиевые и сталеалюминиевые провода и провода из алюминиевого сплава АЖ и многопроволочные тросы.
Минимальные допустимые сечения проводов:


Минимальные допустимые сечения проводов приведены в табл. 2.5.4.

Таблица 2.5.4. Минимальное допустимое сечение сталеалюминиевых проводов ВЛ по условиям механической прочности


На ВЛ 10 кВ и ниже, проходящих в ненаселенной местности с расчетной толщиной стенки гололеда до 10 мм, в пролетах без пересечений с инженерными сооружениями допускается применять однопроволочные стальные провода марок, разрешенных к применению специальными указаниями.
В качестве грозозащитных тросов следует использовать стальные канаты сечением не менее 35 мм² из проволок с пределом прочности не менее 120 даН/мм² . На особо ответственных переходах и в зонах химического воздействия, а также при использовании грозозащитного троса для высокочастотной связи и в случаях, когда это необходимо по условиям термической стойкости (см. 2.5.42), в качестве грозозащитного троса следует применять сталеалюминиевые провода общего применения или специальные.
В пролетах пересечений с надземными трубопроводами и канатными дорогами допускается применение стальных грозозащитных тросов. В пролетах пересечений с трубопроводами, не предназначенными для транспортировки горючих жидкостей и газов, допускается применение стальных проводов сечением 25 мм² и более.
В пролетах пересечений ВЛ с железными дорогами в качестве грозозащитных тросов следует применять стальные канаты с пределом прочности не менее 120 даН/мм² сечением не менее 35 мм² в I и II районах по гололеду и не менее 50 мм² в остальных районах по гололеду.
Для снижения потерь электроэнергии на перемагничивание стальных сердечников в сталеалюминиевых проводах рекомендуется при прочих равных условиях применять провода с четным числом повивов алюминиевых проволок.

Таблица 2.5.5. Наибольший допустимый пролет ВЛ с алюминиевыми, сталеалюминиевыми и стальными проводами и проводами из алюминиевых сплавов малых сечений

Марка провода Предельный пролет, м, при толщине стенки гололеда
до 10 мм 15 мм 20 мм
Алюминиевые:
А 35 140 - -
А 50 160 90 60
А 70 190 115 75
А 95 215 135 90
А 120 270 150 110
А 150 335 165 130
Из алюминиевых сплавов:
АН 35 210 115 75
АН 50 265 155 100
АН 70 320 195 130
АН 95 380 235 160
АН 120 435 270 185
АН 150 490 290 205
АЖ 35 280 175 120
АЖ 50 350 220 140
АЖ 70 430 270 180
АЖ 95 500 330 230
АЖ 120 550 370 260
АЖ 150 605 400 290
Сталеалюминиевые:
АС 25/4,2 230 - -
АС 35/6,2 320 200 140
АС 50/8,0 360 240 160
АС 70/11 430 290 200
АС 95/16, АС 95/15 525 410 300
АС 120/19 660 475 350
Стальные ПС 25 520 220 150

Примечания: 1. Указанные значения предельных пролетов действительны для алюминиевых проводов из проволоки АТ и АТп.
2. Значения предельных пролетов вычислены из условия достижения 80% предела прочности в точках его подвеса, расположенных на одинаковой высоте, при удвоенном весе гололеда и допускаемых напряжениях по табл. 2.5.7.
2.5.40. Для сталеалюминиевых проводов рекомендуются следующие области применения:
1. В районах с толщиной стенки гололеда до 20 мм: при сечениях до 185 мм² - с отношением А: С = 6,0 6,25, при сечениях 240 мм² и более - с отношением А: С = 7,71 8,04.
2. В районах с толщиной стенки гололеда более 20 мм: при сечениях до 95 мм² - с отношением А: С=6,0, при сечениях 120-400 мм² - с отношением А: С = 4,29 4,39, при сечениях 450 мм² и более - с отношением А: С = 7,71 8,04
3. На больших переходах с пролетами более 800 м - с отношением А: С=1,46.
Выбор других марок проводов обосновывается технико-экономическими расчетами.
4. При сооружении ВЛ в местах, где опытом эксплуатации установлено разрушение сталеалюминиевых проводов от коррозии (побережья морей, соленых озер, промышленные районы и районы засоленных песков, прилежащие к ним районы с атмосферой воздуха типов II и III), а также в местах, где такое разрушение ожидается на основании данных изысканий, следует применять сталеалюминиевые провода марок АСКС, АСКП, АСК в соответствии с ГОСТ 839-80, а алюминиевые провода - марки АКП.
На равнинной местности при отсутствии данных эксплуатации ширину прибрежной полосы, к которой относится указанное требование, следует принимать равной 5 км, а полосы от химических предприятий - 1,5 км.
2.5.41. По условиям короны при отметках до 1000 м над уровнем моря рекомендуется применять на ВЛ провода диаметром не менее указанных в табл. 2.5.6.

Таблица 2.5.6. Минимальный диаметр проводов

ВЛ по условиям короны, мм


При выборе конструкции ВЛ и количества проводов в фазе, а также междуфазных расстояний ВЛ необходимо ограничивать напряженность электрического поля на поверхности проводов до уровней, допустимых по короне (см. гл. 1.3) и уровню радиопомех.
2.5.42. Сечение грозозащитного троса, выбранное по механическому расчету, должно быть проверено на термическую стойкость в соответствии с указаниями гл. 1.4. На участках с изолированным креплением троса (см. 2.5.67) проверка на термическую стойкость не производится.
2.5.43. Механический расчет проводов и тросов ВЛ выше 1 кВ должен производиться на основании следующих исходных условий:
1) при наибольшей внешней нагрузке;
2) при низшей температуре и отсутствии внешних нагрузок;
3) при среднегодовой температуре и отсутствии внешних нагрузок.
Допустимые механические напряжения в проводах и тросах при этих условиях приведены в табл. 2.5.7.

Таблица 2.5.7. Допустимое механическое напряжение в проводах и тросах ВЛ напряжением выше 1 кВ

8,04
Провода и тросы Допустимое напряжение, % предела прочности при растяжении Допустимое напряжение, даН/мм² , для проводов из алюминиевой проволоки
АТ АТп
при наибольшей нагрузке и низшей температуре при среднегодовой температуре при наибольшей нагрузке и низшей температуре 12,2 8,1 12,6 8,4
185, 300 и 500 при А: С = 1,46 25,0 16,5 25,2 16,8
330 при А: С = 12,22 10,8 7,2 11,7 7,8
9,7 6,5 10,4 6,9
Стальные:
ПС всех сечений 50 35 31 21,6 - -
тросы ТК всех сечений По ГОСТ или ТУ** - - -
** В зависимости от разрывного усилия троса в целом.
Из алюминиевого сплава сечением, мм²:
16-95 из сплава АН 40 30 8,3 6,2 - -
16-95 из сплава АЖ 11,4 8,5 - -
120 и более из сплава АН 45 30 9,4 6,2 - -
120 и более из сплава АЖ 12,8 8,5 - -

2.5.44. В механических расчетах проводов и тросов ВЛ следует принимать физико-механические характеристики, приведенные в табл. 2.5.8.
Область применения (минимальные допустимые сечения и т. п.) проводов из алюминиевого сплава марки АН соответствует области применения алюминиевых проводов, а проводов из алюминиевого сплава марки АЖ - области применения сталеалюминиевых проводов.
2.5.45. Механические напряжения, возникающие в высших точках подвески алюминиевых и стальных проводов, не должны превышать 105% значений, приведенных в табл. 2.5.7. Напряжения в высших точках подвески сталеалюминиевых проводов на всех участках ВЛ, в том числе и на больших переходах, должны составлять не более 110% значений, указанных в табл. 2.5.7.
2.5.46. На ВЛ должны быть защищены от вибрации:
1. Одиночные алюминиевые и сталеалюминиевые провода и провода из алюминиевого сплава сечением до 95 мм² в пролетах длиной более 80 м, сечением 120-240 мм² в пролетах более 100 м, сечением 300 мм² и более в пролетах более 120 мм, стальные многопроволочные провода и тросы всех сечений в пролетах более 120 м - при прохождении ВЛ по открытой ровной или малопересеченной местности, если механическое напряжение при среднегодовой температуре составляет более, даН/мм²:
  • для алюминиевых проводов и проводов из алюминиевого сплава АН3,5
  • для сталеалюминиевых проводов и проводов из алюминиевого сплава АЖ4,0
  • для стальных проводов и тросов18,0

При прохождении ВЛ по сильно пересеченной или застроенной местности, а также по редкому или низкорослому (ниже высоты подвеса проводов) лесу длина пролетов и значения механических напряжений, при превышении которых необходима защита от вибрации, увеличиваются на 20%.
2. Провода расщепленной фазы, состоящей из двух проводов, соединенных распорками, в пролетах длиной более 150 м - при прохождении ВЛ по открытой ровной или слабо пересеченной местности, если механическое напряжение в проводах при среднегодовой температуре составляет более, даН/мм²:
  • для алюминиевых проводов и проводов из алюминиевого сплава АН4,0
  • для сталеалюминиевых проводов и проводов из алюминиевого сплава АЖ.4,5

При прохождении ВЛ по сильно пересеченной или застроенной местности, а также по редкому или низкорослому (ниже высоты подвеса проводов) лесу значения механических напряжений, при превышении которых необходима защита от вибрации, увеличиваются на 10%.
При применении расщепленной фазы, состоящей из трех или четырех проводов с групповой установкой распорок, защита от вибрации не требуется (кроме случаев, указанных в п. 3).
3. Провода и тросы при пересечении рек, водоемов и других водных преград с пролетами более 500 м - независимо от числа проводов в фазе и значения механического напряжения; при этом защите от вибрации подлежат все пролеты участка перехода.

Таблица 2.5.8. Физико-механические характеристики проводов и тросов

Провода и тросы Приведенная нагрузка от собственного веса, 10 -3 даН/ (м·мм²) Модуль упругости, 10 3 даН/мм² Температурный коэффициент линейного удлинения, 10 -0 град -1 Предел прочности при растяжении, даН/мм² , провода и троса в целом
из проволоки из стали и сплавов
АТ АТп
Алюминиевые А, АКП сечением, мм²:
до 400, за исключением 95 и 240 2,75 6,3 23,0 16 17 -
450 и более, а также 95 и 240 2,75 6,3 23,0 15 16 -
Сталеалюминиевые АС, АСКС, АСКП, АСК сечением, мм²:
10 и более при А: С = 6,06,25 3,46 8,25 19,2 29 30 -
70 при А: С = 0,95 5,37 13,4 14,5 67 68 -
95 при А: С = 0,65 5,85 14,6 13,9 76 77 -
120 и более при А: С = 4,294,39 3,71 8,9 18,3 33 34 -
150 и более при А: С = 7,718,04 3,34 7,7 19,8 27 28 -
185 и более при А: С = 1,46 4,84 11,4 15,5 55 56 -
330 при А: С= 12,22 3,15 6,65 21,2 24 26 -
400 и 500 при А: С = 17,93 и 18,09 3,03 6,65 21.2 21,5 23 -
Стальные:
ПС всех сечений 8,0 20,0 12,0 - - 62
тросы ТК всех сечений 8,0 20,0 12,0 - - *
* Принимается по соответствующим ГОСТ, но не менее 120 даН/мм² .
из алюминиевого сплава АН 2,75 6,5 23,0 - - 20,8
из алюминиевого сплава АЖ 2,75 6,5 23,0 - - 28,5

На участках ВЛ, защищенных от поперечных ветров, при прохождении по лесному массиву с высотой деревьев более высоты подвеса проводов, вдоль горной долины и т. п. защита проводов и тросов от вибрации не требуется.
2.5.47. Для защиты от вибрации алюминиевых проводов и проводов из алюминиевых сплавов АЖ и АН сечением до 95 мм² и сталеалюминиевых проводов сечением до 70 мм² рекомендуется применять гасители вибрации петлевого типа, а для алюминиевых и сталеалюминиевых проводов большего сечения и стальных проводов и тросов - гасители вибрации обычного типа.
2.5.48. На проводах расщепленной фазы в пролетах и петлях анкерных опор должны быть установлены дистанционные распорки. Расстояния между распорками или группами распорок, устанавливаемыми в пролете, не должны превышать 75 м.
Поделиться: