Язвенная коррозия. Питтинговая коррозия

Так что же такое коррозия? Коррозия(от латинского слова «corrodere», что означает «разъедать») это самопроизвольный процесс разрушения материалов(металлов, дерева, камня, пластмассы и пр.) и изделий из них под химическим и электрохимическим воздействием окружающей среды. В данной работе будет рассматриваться именно коррозия металлов.

Коррозия металлов делится по характеру на:

Равномерную коррозию

Контактную коррозию

Язвенную коррозию

Щелевая коррозия

Межкристаллитную коррозию

Коррозию под напряжением

Избирательную коррозию

Коррозийную усталость

Эрозию

Итак, разберем по отдельности каждые виды:

1.Равномерная коррозия - это наиболее часто встречающийся вид коррозии металлов и сплавов. Она обуславливается химическими и электрохимическими реакциями, протекающими равномерно по всей поверхности металла, помещенного в агрессивную среду.

По сравнению с другими видами коррозии равномерная коррозия приводит к наиболшим потерям массы металла, но в тоже время она выявляется наиболее легко и не представляет особой опасности для различных изделий и конструкций, если конечно не превышает технически обоснованных норм. При достаточной толщине металла сплошная коррозия мало сказывается на механической прочности конструкции при равномерно распределенных напряжениях.

2.Контактная коррозия - это вид коррозионного разрушения, который наблюдается при контакте двух разнородных металлов, т.е. которые обладают разными электрохимическими свойствами. При контакте двух разнородных металлов на их поверхности реализуется компромиссный потенциал, который по своему значению отличается от потенциалов каждого металла по отдельности. Компромиссный потенциал определяется пересечением суммарных поляризационных кривых: анодной и катодной. Скорость растворения анода во много зависит от разности потенциалов между катодом и анодом

При неправильной компоновке металлов и сплавов данный вид коррозионного разрушения выводит из строя множество сложных металлических конструкций. Контактная коррозия наблюдается, например, в системах алюминий(и сплавы алюминия)-углеродистая сталь или алюминий-цинк,аллюминий-медь, медь-железо, и т.д. Контактная коррозия также может наблюдаться при контакте изделий из одного и того же металла, но соединенных при помощи пайки либо сварки. Сварной (спаечный) шов будет отличаться электрохимическими свойствами от основного металла. Различная механическая обработка стали (металла) также может вызвать контактную коррозию даже у одного и того же изделия.

3. Язвенная и точечная коррозия - также называется питтингом, является видом местного коррозийного разрушения, в результате которого на отдельных участках поверхности металла или коррозийностойкой стали образуются углубления - язвы, причем остальная поверхность остается незатронутой или корродирует совсем незначительно. Язвы могут отличаться по глубине проникновения и ширине в зависимости от природы металла и от того, в какой среде он корродирует.

Несмотря на то, что язвенная коррозия сопровождается относительно небольшой потерей массы металла или сплава по сравнении со сплошными видами коррозии(равномерной и контактной), она представляет собой один из наиболее опасных видов разрушения. Опасность язвенной коррозии заключается в том, что, снижая прочность отдельных участков, она резко уменьшает прочность, надежность различных конструкции и сооружений. Ее очень трудно обнаружить из-за небольших размеров язв. К сожалению, практически язвенная коррозия обнаруживается только в момент аварии, что приводит к печальным последствиям.

Механизм язвенной (точечной) коррозии:

Само течение точечной коррозии связано с образованием и работой на поверхности металла локальных коррозийных элементов. Примером этого элемента может служить точечная коррозия стали в месте повреждения покрытия из более благородного металла(Ni, Cr, Sn и пр.)

Даже такие пассивные металлы, как Al, Cr, Ni, Mo, Ti - тоже подвержены язвенной коррозии, несмотря на то, что на поверхности перечисленных металлов образуется прочная оксидная пленка, в средах, содержащих ионы хлора. Ионы хлора проникают в ослабленные места защитной пленки(ослабленные по разным причинам, например из-за неоднородной структуры металла, содержащего неметаллические включения либо нарушение кристаллической решетки)

Характерной особенностью процессов язвенной коррозии является большая разница в площади анодной и катодной поверхности. Например, катодный процесс протекает почти на всей площади поверхности, а компенсирующее его анодное сосредоточенно на малых участках, благодоря чему скорость образования коррозии на этих малых участках очень высока.

Также обнаружено, что возникновение и развитие язв на поверхности пассивных металлов и сплавов может произойти только в том случае, если потенциал металла или сплава достигнет определенной величины, называемой потенциалом питтингообразования.

4.Щелевая коррозия. Щелевой коррозией называется интенсивное локальное разрушение металла или сплава в щелях конструкций. Возникновение щелевой коррозии связано с присутствием небольших количеств неподвижного раствора электролита в щелях конструкции, которые образуются вследствие самой конструкции или в ходе эксплуатации. Щелевая коррозия может обнаруживаться в зоне контакта металла с неметаллами(дерево, резина, полимеры, стекло).

Щелевой коррозии могут быть подвержены все металлы, использующиеся в промышленности, но особенно чувствительны к ней пассивные металлы и сплавы на их основе, так как в щелях может произойти депассивация, т.е переход от пассивного состояния в активное, из-за чего наступает усиленая коррозия.

Механизм щелевой коррозии

Этот вид разрушения протекает в любых средах, будь то вода, атмосфера либо грунт. Протекание щелевой коррозии в атмосферных условиях обуславливается скоплением и задержкой влаги в щелях и зазорах.

Особенностью протекания щелевой коррозии является наличие малого количества окислителя либо его полное отсутствие, т.к. в узких зазорах подход окисляющего элемента к стенкам затруднен. Со временем в щели скапливаются продукты коррозии, которые могут изменять значение рН электролита внутри зазора, оказывают влияние на протекание анодного и катодного процесса. Повышение рН электролита способствует разрушению защитных пленок, которые образуются внутри щели. Щели и зазоры на основной поверхности металла являются макропарами, так как металл снаружи щели является катодом, а внутри - анодом.

5. Межкристаллитная коррозия - один из видов местной коррозии металла, который приводит к избирательному разрушению границ зерна. Межкристаллитная коррозия - очень опасный вид разрушения, т.к. визуально ее не всегда можно определить. Металл теряет свою пластичность и прочность.

Межкристаллитной коррозии чаще всего подвергаются металлы и сплавы, которые легко становятся пассивными. К ним относятся хромоникелевые и хромистые сплавы (нержавеющие стали), сплавы алюминия, никеля, некоторые другие.

Причиной возникновения межкристаллитной коррозии чаще всего является структурные изменения металла или сплава, происходящие на границе зерен, особенно при неправильной термообработке и при сварке.

Коррозийностойкие стали становятся склонными к межкристаллитной коррозии во вреся термической обработки при температурах 400-800 градусов по Цельсию. При контакте с агресивной средой такая сталь начитает разрушаться вдоль границ зерен. Склонность стали к межкристаллитной коррозии возникает также при её медленном охлаждении с прохождением через область опасных температур.

Механизм межкристаллитной коррозии

Межкристаллитная коррозия относится к электрохимическим процессам, и обусловлена тем, что твердый раствор при определенных условиях может расслаиваться с образованием по границам зерен фаз, обогащенных одним из компонентов материала, а участки, непосредственно прилегающие к границам зерен, оказываются обедненными этим компонентом. Под действием той или иной агрессивной среды происходит избирательное анодное растворение либо обогащенных, либо соседних с ними обедненных зон.

6. Избирательная коррозия. Избирательная коррозия - это вид коррозии металлических сплавов, заключающийся в удалении из них только одного из компонентов. В результате сплав теряет монолитность и прочность, при этом его геометрические размеры почти не изменяются. Это сильно затрудняет распознавание избирательной коррозии и чаще всего она выявляется уже момент аварии.

Наиболее распространенный вид избирательной коррозии - это обесцинкование латуни и избирательная коррозия железа в чугуне, которая приводит к графитизации - на поверхности чугуна остается слой графита.

7. Коррозия под напряжением. Коррозией под напряжением называется процесс разришения, возникающий при совместном действии коррозийной среды и растягивающих напряжений

Напряжение может усиливать общую коррозию или вызвать растрескивание.

При коррозийном растрескивании в металле образуются трещины, перепендикулярно направлению действия напряжений и приводящее в конце концов к разрушению металлического изделия.

Механизм коррозийного растрескивания

Коррозийное растрескивание вызвано хрупким разрушением металла без пластической деформации. Коррозийное растрескивание может быть межкристаллитным(трещины по границам зерен) и транскристаллитными (трещины внутри самих зерен). Оно зависит от природы металла, термообработки и характера агресивной среды. При этом образуется одна главная трещина и небольшие ответвления от неё.

  • 8. Коррозийная усталость -это разрушение металла под воздействием периодической динамической нагрузки (знакопеременных напряжений) и коррозионных сред. Коррозионная усталость металла среди других разновидностей коррозии под напряжением встречается наиболее часто. При нахождении металла в коррозионной среде некоторое время, предел его выносливости понижается, и конструкция уже не выдерживает нормальных для нее ранее напряжений. Коррозионная усталость металла сопровождается развитием межкристаллитных и транскристаллитных трещин (по границам зерен), которые разрушают металл изнутри. Развитие трещин идет, главным образом, в момент, когда металлоконструкция испытывает нагрузку. В результате периодических термических напряжений в металле защитная оксидная либо любая другая пленка на его поверхности разрушается. Коррозионная среда имеет свободный доступ к открытой поверхности. Сквозь поверхностные трещины агрессивная коррозионная среда также проникает вглубь металла, интенсифицируя разрушение.
  • 9. Эрозия. Эрозией называется разрушение поверхности металла, вызванное коррозийнно-механическим воздействием быстро движущейся среды. Различают три вида эрозии по характеру наносимых их повреждений: кавитационная, струйная и коррозия при трении.

Кавитационная эрозия возникает при быстром движении жидкости относительно металла вследствии образования и изчезновения пузырьков пара вблизи поверхности. Такому виду эрозии подвержены гребневые винты, гидравлические турбины и пр.

Струйная эрозия - это разрушение металла под действием потока жидкости, движущейся в турбулентном режиме и содержащей пузырьки воздуха. Такой эрозии подвержены элементы трубопроводов.

Коррозия при трении - это разрушение, идущее по границе раздела между двумя поверхностями, одна или обе которые являются металлическими, и перемещающимися относительно друг друга с нагрузкой

Язвенная коррозия, как правило, протекает на поверхности активно растворяющихся металлов (в некоторых случаях коррозионные язвы могут образовываться и при слиянии питтингов, растущих на пассивном металле) и по характеру своего развития напоминает пит-тинговую коррозию, вследствие чего четкая квалификация локального коррозионного процесса часто бывает затруднена. Склонностью к язвенной коррозии обладают углеродистые и низколегированные стали, эксплуатирующиеся в водных хлоридсодержащих средах, например, водоводы, водопроводы, теплоэнергетическое оборудование.

Стойкость углеродистых и низколегированных сталей против язвенной коррозии в значительной степени зависит от их структурных и структурно-фазовых составляющих. Резкое снижение стойкости сталей против язвенной коррозии происходит при выделении в их структуре сульфидных неметаллических включений на основе кальция. Существенно меньшую и имеющую практическое значение только для углеродистых сталей опасность представляют включения сульфида марганца. Для сталей с феррито-перлитной структурой склонность к язвенной коррозии возрастает при образовании непрерывной сетки тонкодисперсных перлитных выделений.

Механизм действия сульфидов на основе кальция подобен описанному ранее для питтинговой коррозии нержавеющих сталей. Их более высокая, по сравнению с сульфидами марганца, коррозионная опасность объясняется более высокой скоростью растворения в электролитах.

Механизм действия перлитных фаз следующий. Перлит имеет слоистую пластинчатую структуру с соотношением толщин феррит-ной и цементитной пластинчатых фаз (7-8):1. Толщина пластин в зависимости от условий термической обработки может меняться примерно в 10 раз, в частности для феррита - от 0,1 до 1,0 мкм, причем чем тоньше пластины, тем более они искривлены. В нейтральных средах феррит растворяется на 1-2 порядка величины быстрее, чем цементит. С усилением кислотности раствора скорость растворения феррита возрастает еще на несколько порядков величины, а скорость растворения цементита если и изменяется, то не более, чем в 10 раз.

При коррозии в нейтральном растворе локальная среда в микрозазоре, оставленном растворяющейся ферритной пластиной, подкисляется, скорость растворения феррита еще более возрастает. Чем тоньше пластины в перлитовой колонии, тем быстрее закисляется среда в первых образовавшихся зазорах и тем выше скорость дальнейшего растворения ферритных пластин. Скорость же растворения феррита матрицы металла при этом будет оставаться неизменной. Потерявшие связь с металлом цементитные пластины выкрашиваются, образуя коррозионные язвы. Рассмотренный механизм имеет общие черты с питтинговой и щелевой коррозией, поскольку локальное подкисление раствора стимулирует коррозионный процесс. Видна общность с МКК, поскольку в обоих процессах происходит вытравление потерявшей связь с металлической матрицей карбидной фазы.

Как и все металлы, нержавеющие стали в некоторых случаях могут подвергаться коррозии равномерно по всей поверхности. Если среда не обладает значительными окислительными свойствами, защитная пленка на поверхности металла может в конце концов исчезнуть, что приводит к общей коррозии (неустойчивая пассивность). Более того, состояние поверхности металла влияет на природу его пассивности; коррозионная стойкость максимальна, если поверхность металла не загрязнена частицами железа или различными отложениями.

Межкристаллитная коррозия

Межкристаллитная коррозия нержавеющей стали происходит в основном возле сварных швов. Она может возникнуть также в результате горячей штамповки или термической обработки металла. Это явление обусловлено локальным снижением содержания хрома при анодном растворении карбида хрома, который выделяется по границам зерен возле сварных швов при температурах 400-800 °С. В кислой среде сцепление зерен при этом нарушается и металл становится хрупким.

Развитие межкристаллитной коррозии, которая характерна для аустенитных сталей, можно предотвратить двумя способами: снижением содержания углерода в стали до 0,03% (чтобы ограничить образование карбида хрома) и применением стали, стабилизированной ниобием или титаном, которые с углеродом образуют устойчивые карбиды.

Питтинг

Растворенный кислород обычно способствует пассивации нержавеющей стали за исключением случаев, когда происходит питтинговая коррозия (при наличии в среде хлоридов и бромидов. Этот очень распространенный и очень опасный вид коррозии приводит к образованию сквозных изъязвлений, которые могут быть почти невидимы на поверхности. Вероятность питтинговой коррозии нержавеющей стали под действием растворов, содержащих хлориды, возрастает с увеличением количества воздуха в растворе. Молибденсодержащие нержавеющие стали с высоким содержанием хрома и низким содержанием углерода (например, Z2CND13) относительно стойки к этому виду коррозии.

Общие закономерности возникновения питтинговой коррозии трудно установить, так как они зависят от многих факторов: pH среды, концентрации кислорода, температуры, солесодержа-ния, количества взвешенных веществ и т. д. В некоторых случаях для предотвращения питтинговой коррозии могут быть применены высокосортные сплавы, такие как уранус (Uranus).

Язвенная коррозия

Существует очень мало металлов, не подвергающихся этой разновидности коррозии. Она развивается в застойных зонах, где затруднена или полностью отсутствует диффузия кислорода. Особенно часто язвенная коррозия обнаруживается под слоем отложений, оксидов, биологических обрастаний, под неметаллическими, негерметичными соединениями и т. д.

Язвенная коррозия нержавеющих сталей представляет собой сложный процесс. Он инициируется дифференциальной аэрацией, ведущей к образованию маленьких ячеек, в которых удерживаются продукты коррозии. Если коррозионной средой является, например, вода, содержащая кислород, которая практически нейтральна, но содержит хлориды, гидролиз первичных продуктов коррозии в ячейках приведет к образованию соляной кислоты, которая, достигнув некоторой критической концентрации, вызовет развитие язвенной коррозии. Поэтому язвенная коррозия характеризуется инкубационным периодом, который может продолжаться несколько месяцев. Но если процесс коррозии начался, он развивается очень быстро. В таких случаях коррозия усиливается образованием локальных электрохимических элементов между пассивным и активным металлом, которые быстро разрушают пассивирующую пленку.

Если продукты коррозии смываются водой во время инкубационного периода, процесс язвенной коррозии прекращается полностью.

Наличие никеля и молибдена в стали увеличивает продолжительность инкубационного периода и, таким образом, повышается бероятность того, что процесс будет приостановлен на этот период. Однако, если инкубационный период закончился и начался процесс язвенной коррозии, его скорость для стали с высоким содержанием никеля и молибдена будет столь же велика, как и для стали с меньшим содержанием этих компонентов.

Чтобы предотвратить возникновение язвенной коррозии, необходимо исключить условия, которые способствуют развитию дифференциальной аэрации. Для этой цели должны быть исключены все изменения концентрации кислорода в среде. Однако было бы неправильно предполагать, что путем насыщения среды кислородом и перемешиванием можно добиться состояния насыщения кислородом в трудно доступных зонах.

Для предотвращения образования отложений следует поддерживать достаточно высокие скорости движения воды, если возможно более 3 м/с, а сооружения должны быть запроектированы таким образом, чтобы при эксплуатации не возникали застойные зоны. Если это не удается осуществить, следует предусмотреть возможность периодического дренирования и очистки таких зон.

Коррозия под напряжением

Коррозия под напряжением может происходить в аустенитных сталях, подвергающихся механическим напряжениям, которые или являются остаточными после предварительной обработки (штамповки, сварки), или возникают в процессе эксплуатации. Коррозия под напряжением может развиваться и в некоррозионной среде, но активизируется в присутствии горячих растворов хлоридов щелочных или щелочноземельных металлов. После инкубационного периода различной продолжительности коррозия под напряжением проявляется в виде быстро распространяющихся глубоких трещин.


Чтобы предотвратить развитие коррозии под напряжением , в некоторых случаях необходимо снять напряжения соответствующей термической обработкой.

Специальные виды коррозии нержавеющей стали

Как и при коррозий обычной стали, высокая скорость потока коррозионной жидкости может помешать образованию пассивирующей пленки и в результате будет развиваться локальная коррозия. Защитная пленка также может быть разрушена механическим абразивным воздействием твердых частиц, находящихся в жидкости.

Коррозия, вызванная образованием микропар, возникает в местах соединений различных металлов, например, в местах сварки между нержавеющей и мягкой сталью. В этом случае мягкая сталь становится анодом по отношению к нержавеющей стали и подвергается коррозии. С другой стороны, такое соединение может предотвратить питтинговую или язвенную коррозию нержавеющей стали 18-10 Мо.

Процесс холодной штамповки может привести к образовав нию механически упрочненного мартенсита, который является анодом по отношению к аустениту, составляющему остальную структуру, и поэтому становится преобладающей зоной коррозии. Этого явления можно избежать, используя низкоуглеродистые стали с высоким содержанием никеля, в которых аустениты очень стабильны.

Д.т.н. Ю.В. Балабан-Ирменин, главный научный сотрудник, лаборатория «Водного режима и коррозии оборудования ТЭС» ОАО «Всероссийский теплотехнический институт» (ВТИ), г. Москва

(из книги Ю.В. Балабан-Ирменина, В.М.Липовских, А.М. Рубашова «Защита от внутренней коррозии трубопроводов водяных тепловых сетей», М.: Издательство «Новости теплоснабжения», 2008 г.)

Особенности механизма возникновения локальной коррозии сталей

Ярко выраженная неравномерная или локальная электрохимическая коррозия характерна для углеродистых сталей во многих производственных процессах, где металл контактирует с аэрированной природной водой (системы холодного и горячего водоснабжения, охлаждения и т.д.). Суммарное содержание в природных водах коррозионно-агрессивных ионов (сульфатов и хлоридов) составляет не менее 5 мг/кг. Коррозия в этих системах протекает с катодным контролем , а влияние состава стали на скорость коррозии минимально или вообще отсутствует . Считается, что в таких условиях скорости коррозии углеродистых сталей и низколегированных сталей, содержащих суммарно не более 2-3% Сг, Ni, Mn, Mo, достаточно близки, а процесс коррозии металла находится в области активного растворения . Поэтому локальные повреждения перлитных сталей в системах холодного водоснабжения, горячего водоснабжения, в холодной натрий-катионированной воде и в сетевой воде связывались с возникновением пар неравномерной аэрации, а также с другими случаями макронеоднородности поверхности металла. Необходимо отметить, что углеродистая сталь может пассивироваться в высокочистой нейтральной воде (дистиллят и бидистиллят) . Но такая чистая вода в отечественных теплосетях не используется, а наличие в воде сульфатов и хлоридов вызывает депассивацию стали.

В тепловых сетях используется практически природная вода, т.к. анионный состав исходной воды при подготовке подпиточной воды теплосети изменяется несущественно. Однако условия в теплосети резко отличаются от условий в вышеперечисленных технологических процессах. В системах водопровода, горячего водоснабжения (для закрытых систем теплоснабжения) и охлаждения используется аэрированная вода с содержанием кислорода от 9,1 мг/кг (при температуре 20 О С) до 3,7 мг/кг (при температуре 70 О С). Содержание кислорода в сетевой воде не должно превышать 20 мкг/кг, хотя на практике оно несколько выше.

Исследования коррозии углеродистых сталей в условиях теплосети при содержании кислорода 30-40 мкг/кг и значениях рН выше 7 показали, что на анодных поляризационных кривых, снятых в отсутствие сульфатов и хлоридов, наблюдается область пассивного состояния металла. При повышении концентрации хлоридов до 10 мг/кг и отсутствии сульфатов на кривых появлялась область питтингообразования. При увеличении содержания в воде сульфатов и хлоридов ширина диапазона потенциалов, отвечающих пассивному состоянию металла, снижалась. Причем депассивирующее действие сульфатов было намного больше, чем хлоридов. При достаточно высоких концентрациях сульфатов и хлоридов (в зависимости от значения рН и температуры) область пассивности на анодных кривых исчезала и они имели гладкую форму (в этих условиях питтингообразование могло начинаться уже при потенциале коррозии). Повышение значения рН расширяло диапазон концентраций сульфатов и хлоридов, при которых на анодных кривых сохранялась область пассивности, что связано с увеличением защитных свойств железооксидных пленок.

В большинстве случаев при наличии на анодных кривых области пассивного состояния металла потенциал коррозии стали находился в области активного равномерного растворения, где скорость коррозии была очень низкой (6-часовая выдержка образца стали в деаэрированной воде при рН=8,6 и температуре 90 О С не вызывала даже потускнения поверхности стали). При малых концентрациях хлоридов, сульфатов и значениях рН >9,2 потенциал коррозии находился в области пассивности (самопассивация).

Содержание кислорода в воде систем водоснабжения и охлаждения в ходе их эксплуатации практически не изменяется. Напротив, для сетевой воды характерны периодические резкие изменения концентрации кислорода за счет нарушения режима деаэрации. Например, на одной крупной ТЭЦ в 1992-1994 гг. содержание кислорода в прямой сетевой воде превышало 200 мкг/кг в течение 500-600 ч в году. Известны случаи, когда на некоторых ТЭЦ периодически подавали в теплосеть недеаэрированную подпиточную воду с содержанием кислорода более 9 мг/кг.

Увеличение концентрации кислорода в воде приводит к растормаживанию катодного процесса и смещению потенциала коррозии стали в положительном направлении. Небольшое увеличение концентрации кислорода может привести к сдвигу потенциала коррозии из области активного растворения в область пассивного состояния металла, а значительное увеличение концентрации кислорода смещает потенциал коррозии в область питтингообразования. Даже небольшие, но частые увеличения содержания кислорода в сетевой воде повышают опасность образования питтингов, развивающихся далее в язвы.

В условиях теплосети локальное разрушение пассивной пл енки на стали обычно происходит под воздействием ионов-активаторов, в первую очередь сульфатов, при увеличении содержания кислорода. Чем выше концентрация активаторов, тем меньшая концентрация кислорода вызывает образование питтингов. Питтингооб- разование может протекать и при нормативной концентрации кислорода в сетевой воде в случае очень высоких концентраций хлоридов и сульфатов. Разрушение пассивной пленки происходит в первую очередь в ее дефектах, которые часто связаны с нарушениями в поверхностном слое металла: неметаллическими включениями и дислокациями .

При нормативном содержании кислорода в воде коррозия металла трубопроводов теплосети протекает обычно в области активного, равномерного растворения с кислородной деполяризацией. Поэтому возникновение локальных поражений металла может быть связано с наличием пар неравномерной аэрации и неоднородностью железооксидных пленок на поверхности стали.

Проведенный в 1988 г. осмотр большого количества труб, эксплуатировавшихся в районах Тепловых сетей «Мосэнерго», показал, что достаточно часто наросты продуктов коррозии и язвы под ними располагаются линейно и ориентированы параллельно сварному шву. Линейно расположенные коррозионные поражения были отмечены в различных районах Тепловых сетей на 10-30% труб. В то же время на ряде труб были обнаружены полосы другого типа. Например, на параллельно-шовной трубе диаметром 500 мм на внутренней поверхности параллельно оси трубы находилась полоса темного гладкого плотного оксидного слоя, похожего на окалину, шириной 6-8 мм. Вся остальная поверхность трубы была покрыта более толстым слоем рыхлых (особенно по краям полосы) бугристых отложений темно-бурого цвета. Подобная полоса не могла образоваться в процессе эксплуатации, а явно существовала на новой трубе. Для изучения ситуации с состоянием новых труб были обследованы трубопроводы на центральном складе. На внутренней поверхности большинства

сварных труб диаметром более 500 мм как прямошовных, так и спиральношовных, визуально наблюдались линейные участки, отличающиеся по своему внешнему виду от остальной поверхности трубы. На наружной поверхности новых труб такие полосы не были обнаружены.

Полоски проходили параллельно сварному шву трубопровода как вплотную к шву, так и вдали от него. Они имели цвет и структуру, значительно отличающуюся от остальной поверхности. Если вся поверхность трубы покрыта рыхлым слоем оксидов железа рыжего или темно-бурого цвета, то поверхность металла на этих полосах покрыта тонким плотным оксидным слоем, как правило, более темного цвета по сравнению с окружающей поверхностью. Ширина полос составляла 10-20 мм.

Соответствие расположения линейных участков неоднородности внутренней поверхности труб местам коррозионных повреждений позволило предположить наличие связи между ними. Поэтому в дальнейшем были проведены прямые эксперименты по определению коррозионной стойкости различных участков внутренней поверхности труб, а также металлографические исследования .

Металлографические исследования темплетов, вырезанных из новых труб, показали, что темный цвет полос определяется наличием на поверхности металла окалины, а на остальной части трубы окалина отсутствует и оксидный слой состоит из продуктов атмосферной коррозии. Отличий в структуре металла на различных участках труб не обнаружено. Под слоем окалины зафиксирована повышенная микротвердость металла (наклеп), обычно приводящий к снижению коррозионной стойкости. Характер коррозионного разрушения труб под рыхлой ржавчиной объемно-кристаллический, т.е. разрушение протекало равномерно, в результате чего получалась рельефная металлическая поверхность. На образцах с гладкой темной окалиной локальные коррозионные разрушения наблюдались только в местах нарушения ее сплошности.

Для исследования влияния состояния поверхности труб на их коррозионное поведение из новой прямошовной трубы диаметром 820 мм вырезали образцы, содержавшие темную полосу окалины, и образцы, покрытые ржавчиной. Пары образцов с окалиной и ржавчиной погружали в аэрированную сетевую воду с температурой 70 О С и методом гальванопар определяли направление и величину тока, протекающего между образцами.

Измерения потенциалов коррозии и направления тока между образцами свидетельствуют о защитных свойствах плотного слоя окалины, но согласно поляризационным измерениям образцы с окалиной более склонны к язвенной коррозии. Локализация коррозии трубопроводов теплосети под полосами окалины объясняется тем, что в окалине имеются отдельные дефекты (поры, микротрещины и т.д.), через которые к поверхности металла проникает вода, содержащая растворенный кислород. В ходе коррозии полосы окалины в результате отслаивания могут исчезать, но образовавшиеся в дефектах окалины язвы продолжают развиваться.

Характерным примером разрушения трубопроводов, связанным с наличием на их внутренней поверхности полос окалины, является разрыв спиральношовного трубопровода по цепочке язв, расположенной параллельно сварному шву (но не вплотную к нему). Разрушения вдоль сварного шва могут быть связаны как с зоной термического влияния сварки, так и с полосами окалины, расположенными вплотную к шву. Для определения причин появления полос окалины на внутренней поверхности новых сварных труб большого диаметра была изучена технология производства труб на трубопрокатных заводах. В результате выяснилось, что полосы являются следами валков, формирующих трубы. Таким образом, наличие на внутренней поверхности труб полос окислов с различной защитной способностью, возникающих в процессе производства труб, во многом определяет зарождение и развитие язвенной коррозии металла в эксплуатационных условиях теплосети.

Влияние приварки опор

Статистический анализ повреждаемости оборудования Тепловых сетей «Мосэнерго» за 1985-1987 гг. выявил достаточно высокий уровень повреждений от внутренней коррозии в местах приварки как скользящих, так и неподвижных опор. Коррозионное разрушение металла в этом случае выглядит как канавка на внутренней поверхности точно напротив места наружной приварки опоры.

Металлографические исследования, проведенные ВТИ на вырезках из трубопроводов теплосети в месте приварки опор, не показали изменения структуры металла внутренней поверхности труб. Исходя из имеющихся данных по влиянию оксидных слоев на внутреннюю коррозию трубопроводов теплосети, можно предположить, что и в данном случае одной из причин локальной коррозии является неоднородность оксидной пленки. Термическое влияние сварки, в особенности при больших значениях тока сварки, может приводить к изменению структуры и защитных свойств оксидной пленки на внутренней поверхности труб за счет ее нагрева. Повышение неоднородности поверхности стали в месте сварки может вызывать интенсификацию локальной коррозии. Для проверки этого предположения было проведено исследование термического влияния приварки опор на локальную коррозию трубопроводов .

Язвенная коррозия на внутренней поверхности труб в местах приварки опор объясняется следующими причинами. Термическое влияние сварки приводит к тому, что оксидная пленка на внутренней поверхности трубы напротив шва уплотняется и, в целом, становится более защитной, чем вне зоны термического влияния. В то же время резкий нагрев и последующее охлаждение места приварки вследствие различия коэффициентов теплового расширения металла и его оксидов создает в пленке внутренние напряжения, вызывающие ее растрескивание. В возникающих коррозионных элементах поверхность с плотной оксидной пленкой становится катодом, а участки металла в ее дефектах - анодами. Нагрузки на металл в местах приварки опор усиливают деформацию нагреваемого металла. Поэтому совмещение термического влияния сварки с механическими нагрузками значительно ускоряет зарождение и развитие язвенной коррозии в местах приварки опор.

Конструкция опор, где при наличии неоднородности внутренней поверхности, вызываемой сваркой, могут возникать значительные нерасчетные механические напряжения, является коррозионно-опасной. В связи с этим необходимо при реконструкции и перекладке трубопроводов устанавливать скользящие опоры, в конструкции которых не применяется приварка опор к трубопроводу.

Влияние состава стали. Неметаллические включения

Влияние состава стали и возможно неметаллических включений на коррозионные процессы в условиях теплосети подтверждается следующими данными. При исследовании процессов локальной коррозии металла труб в западном районе теплосети г. Ростов-на-Дону были обнаружены резкие отличия в поведении сталей, имеющих суммарное содержание примесей не более 2% . Длительная (более 18 лет) работа подающего трубопровода диаметром 1020x10 мм при различных водно-химических режимах западного района ростовской теплосети привела к тому, что на нижней образующей трубы образовалась дорожка шириной 200-300 мм, отложения на которой состояли из оксидов железа. Остальная часть периметра трубы имела отложения сложного состава, включающие СаСО 3 . На нижней образующей трубы были обнаружены язвы. При этом на ряде участков локальные поражения выглядели как одна или две цепочки воронкообразных язв глубиной до 7 мм, иногда переходящих в свищи. На других участках трубы вместо глубоких язв образовывалась россыпь мелких (глубиной 1-2 мм) «блюдцеобразных» язв. Несмотря на то, что в обоих случаях внутренняя поверхность трубопроводов имела коррозионные локальные поражения, опасность глубоких язв значительно выше вследствие повышения вероятности образования свищей.

Анализ химического состава стали показал, что участки с глубокими язвами были выполнены из сталей 10 и 20, а участок трубы с мелкими язвами - из стали 17Г1С.

Стандартные металлографические исследования не позволили вскрыть причины отличий в коррозионном поведении сталей 20 и 17Г1С. Можно предположить, что отличие в характере локальной коррозии этих сталей связано с различиями их химического состава, определяющего наличие на поверхности металла коррозионно-опасных микровключений. Основным отличием стали 17Г1С от сталей 10 и 20 является повышенное содержание кремния и марганца. Влияние неметаллических включений на локальную коррозию сталей различного класса, имеющих на поверхности пассивирующую оксидную пленку, должно быть одинаково. Общей закономерностью является возможность локального разрушения защитной пленки в месте расположения коррозионно-опасных включений. Поэтому экспериментальные данные, полученные при исследовании локальной коррозии нержавеющих сталей, могут быть использованы при рассмотрении процесса локальной коррозии трубопроводов теплосети.

Для нержавеющих сталей аустенитного и фер- ритного класса на основе большого объема исследований показано, что существует критическое произведение (П ф) концентраций в стали марганца (Mn) и серы (S), составляющее (2+5).10 -3 (%) 2 . При П=[Мп].^]<П кр количество коррозионно-активных включений марганца и серы настолько мало, что практически не влияет на локальную коррозию металла . При П>П ф происходит увеличение количества микровключений марганца и серы. Одновременно ухудшаются коррозионно-электрохимические характеристики сталей. Можно предположить, что в стали 17Г1С (П=0,041 (%) 2) количество коррозионно-активных включений марганца и серы значительно выше, чем в сталях 10 и 20 (П=0,01+0,014 (%) 2).

Эксплуатационный опыт теплосети г. Ярославля, использующей менее агрессивную, чем донская, волжскую воду, также показывает, что сталь 17Г1С имеет значительно более высокую коррозионную стойкость, чем стали 10 и 20.

Приведенные примеры свидетельствуют, что состав стали и неметаллические включения могут очень сильно влиять на коррозионную стойкость углеродистых сталей в условиях теплосети (об исследованиях в этой области также см. статью «Повышение коррозионной стойкости сталей для труб тепловых сетей путем обеспечения чистоты по коррозионно-активным неметаллическим включениям», журнал НТ, № 9, 2005, с. 41-45 - прим. ред.).

Литература

1. Улиг Г.Г., Реви Р.У. Коррозия и борьба с ней. Л.: Химия, 1989.

2. Коррозия и защита химической аппаратуры / Под ред. А.М. Сухотина. Т. 3. Л.: Химия, 1970.

3. Томашов Н.Д. Теория коррозии и защиты металлов. М.: Изд-во АН СССР, 1959.

4. Акользин П.А. Предупреждение коррозии оборудования технического водо- и теплоснабжения. М.: Металлургия, 1988.

5. Рейзин Б.Л., Стрижевский И.В., Шевелев Ф.А. Коррозия и защита коммунальных водопроводов. М.: Стройиздат, 1979.

6. Рейзин Б.Л., Стрижевский И.В., Сазонов Р.П. Защита систем горячего водоснабжения от коррозии. М.: Стройиздат, 1986.

7. Локальная коррозия металла теплоэнергетического оборудования / Под ред. В.П. Горбатых. М.: Энергоатомиздат, 1992.

8. Колотыркин Я.М., Флорианович Г.М., Петров П.С. и др. О применении кислорода для защиты сталей от коррозии в воде при высоких температурах/ Коррозия реакторных материалов. М.: Атомиздат, 1960. С. 29-41.

9. Подобаев Н.И., Шакиров А.С., Жданова Э.И. Влияние ингибитора СКМ-1 на коррозию стали и потенциал коррозии железа в дистиллированной и слабоминерализованной воде // Защита металлов. 1992. Т. 28. № 3. С. 437-444.

10. Фрейман Л. И. Стабильность и кинетика развития питтин- гов. Итоги науки и техники. Серия коррозия и защита от коррозии. М.: ВИНИТИ, 1985. Т. 11. С. 3-71.

11. Балабан-Ирменин Ю.В., Ершов Н.С., Липовских В.М. и др. Влияние неоднородности поверхности трубопроводов на внутреннюю коррозию в теплосети // Электрические станции. 1990. № 5. С. 37-42.

12. Балабан-Ирменин Ю.В., Рубашов А.М., Бритвина О.В. и др. Исследование термического влияния приварки опор на развитие локальной коррозии трубопроводов теплосети // Теплоэнергетика. 1990. № 9. С. 22-25.

13. Балабан-Ирменин Ю.В., Шереметьев О.Н., Меламед М.М. Влияние химического состава стали на коррозию при контакте с водой теплосети // Электрические станции. 1998. № 10. С. 34-38.

14. Фрейман Л.И., Реформатская И.И., Маркова Т.П. Взаимосвязь влияния легирующих элементов и сульфидных включений на пассивируемость и питтингообразование нержавеющих сталей // Защита металлов. 1991. Т. 27. № 4. С. 617-625.

ООО «Издательство «Новости теплоснабжения» предлагает книгу 363 руб «Защита от внутренней коррозии трубопроводов водяных тепловых сетей» Авторы: Балабан-Ирменин Ю.В., Липовских В.М., Рубашов А.М.

Книга рассчитана на эксплуатационный инженерно-технический персонал предприятий тепловых сетей, электростанций и котельных, сотрудников наладочных, проектных и научно-исследовательских организаций.

Подробнее ознакомиться с содержанием и заказать книгу можно на сайте

Nikolay_K 09-08-2013 02:57

КАКИЕ СТАЛИ ПОДВЕРЖЕНЫ ПИТТИНГОВОЙ КОРРОЗИИ

Nikolay_K 09-08-2013 03:03

КАКИЕ ФАКТОРЫ СПОСОБСТВУЮТ РАЗВИТИЮ ПИТТИНГОВОЙ КОРРОЗИИ
============================================

При питтинговой (точечной) коррозии разрушению подвергаются только отдельные участки поверхности, на которых образуются глубокие поражения - питтинги (точечные язвы).

Наблюдается питтинговая коррозия при воздействии на металл или сплав не только пассиваторов (приводят поверхность в пассивное состояние, например, окислитель), но и ионов-активаторов (Cl-, Br-, J-). Активно протекает питтинговая (точечная) коррозия в морской воде, смеси азотной и соляной кислот, растворах хлорного железа, других агрессивных средах.

Склонность к питтинговой коррозии определяется некоторыми факторами:

Природой металла или сплава;

Температурой (с повышением температуры растет количество питтингов);

Состоянием поверхности (хорошо отполированная поверхность более стойкая, чем шероховатая);

РН среды (чаще возникают питтинги в кислых средах);

Примесями в среде (наличием ионов-активаторов).

gromootvod69 14-08-2013 10:27


Глядите и думайте!

radioboot 14-08-2013 12:17

1-й ножеман: А чето мне D2 в последнее время не нравится...
2-й ножеман: Не нравится - не ешь!*

puphik 14-08-2013 12:25



Вот это я понимаю ПИТИНГОВАЯ КОРРОЗИЯ!!!


Nikolay_K 14-08-2013 16:22



Нет, это ЯЗВЕННАЯ КОРРОЗИЯ!!!

wren 14-08-2013 17:31

quote: Originally posted by gromootvod69:
При всем уважении почтеннейшие, но разве на ваших фото это коррозия, да это детская забавка. Вот у меня питтинг получился на опасной бритве, так это да! И всего за 4 суток.
Консервировал я помидоры и огурцы, и вот остался после всего процесса примерно литр рассола с пряностями и с чуть-чуть яблочного уксуса, горячий, ароматный, ну думаю, чего добру пропадать, -отлил его в чашку для бритья да и побрился. бритву очень тщательно вытер бумажной салфеткой......и через четыре дня,-О УЖАС! Бритве КАЮК! Вот это я понимаю ПИТИНГОВАЯ КОРРОЗИЯ!!!
Глядите и думайте!


Объясните мне,зачем нужно было бриться рассолом?
Что это даёт,кроме коррозии на бритве?

Boss28 14-08-2013 18:41



Нет, это ЯЗВЕННАЯ КОРРОЗИЯ!!!

Да не, это просто ржавчина и соль этот процесс сильно ускорила. И всего-то промыть водой было нужно.

1shiva 14-08-2013 19:22

quote: Originally posted by gromootvod69:

отлил его в чашку для бритья да и побрился


Хоть бритье-то понравилось?Убивца:-)
С уважением,1shiva

puphik 14-08-2013 20:30

quote: Originally posted by Nikolay_K:

а чем отличается язвенная коррозия от питтинговой?


Формой поражения. У питтинга самый большой размер глубина, а у язвы глубина сравнима с поперечными размерами, чаще меньше них.

falcone 16-08-2013 10:28

Зараза эта точечная коррозия Ржу углеродок легко устранять,протер тряпочкой с маслицем и порядок,запустил чуток - протер тряпочкой с пастой и отлично,а эти точки краттеры и пастой не сотрешь. Два варианта- или наплевать и не обращать внимания или перешлифовка

Ванкрон с фото Ивана я все же перешлифовал и в дальнейшем протравлю в хлорном железе.

oldTor 16-08-2013 10:57

falcone 16-08-2013 21:07

quote: Originally posted by Nikolay_K:

И как Вы думаете, почему японцы


Если вы что-то знаете,если у вас есть рецепт и лекарство от коррозиии,то расскажите его нам? Все хором скажут спасибо.

А загатки загадывать и намёками изъясняться....

Доктор у Вас лекарство есть?

puphik 16-08-2013 21:38

quote: Originally posted by Nikolay_K:

А что такое тогда по-вашему воронение,


Есть несколько способов, но все они заключаются во взаимодействии нагретого металла с минеральными маслами или олифами, в результате чего на поверхности металла создается пленка неких комплексных соединений, защищающих металл он коррозии. Защищает не очень хорошо. Допустим, если после охоты в дождливую погоду не обслужите вороненые стволы ружья, то уже через сутки на поверхности появится ржавчина, которая очень хорошо видна при протирании чистой белой тряпочкой. Лучший результат дает фосфатирование - создание на поверхности металла комплексных солей фосфора путем кипячения в соответствующих реактивах.
Оксидированием углеродистые стали не защищают.

quote: Originally posted by Nikolay_K:

как Вы думаете, почему японцы любят оставлять куроучи (http://www.knifeforums.com/forums/showtopic.php?tid/826095/)?


falcone 16-08-2013 21:48

quote: Originally posted by Nikolay_K:

рецепты вот тут:


Можно всего один рецепт,но самый лучший и простой ,ах да и по Русски.

Мне ооочень понравилась железка Ванкрон-40 и если ещё как то побороть коррозию,то цены этой сталюке не будет.

Nikolay_K 16-08-2013 22:10

quote: Originally posted by puphik:

Анодирование - это электрохимическое оксидирование алюминия и его сплавов.

анодируют и стали в том числе, а не только алюминий.

Много раз встречал такое.

Nikolay_K 16-08-2013 22:16

quote: Originally posted by puphik:

Простите, но не силен в ангицком и не знаю, что такое "куроучи"...

имелось в виду то, что японцы называют 黒打仕上げ : 
http://www.utihamono.com/info/y-kurouchi.html
http://www.utihamono.com/houcho/li-kurouchi.html

Nikolay_K 16-08-2013 22:19



Можно всего один рецепт,но самый лучший и простой,ах да и по Русски.

OK. Вот самый простой рецепт:


И так каждый раз.

А если заметил следы ржавчины --- так незамедлительно устраняй не дожидаясь пока она разрастётся и прожрёт дыру.

falcone 16-08-2013 22:41

quote: Originally posted by Nikolay_K:

Попользовался ножом, сразу же помыл начисто, вытер насухо, помазал маслом.
И так каждый раз.
А если заметил следы ржавчины --- так незамедлительно устраняй не дожидаясь пока разрастётся и прожрёт дыру.


Рецепт от ОРВИ,а случай с Ванкроном это простите Грипп


Тоже самое происходило и с полированой ДИ-90 ,но знаачительно более растянуто во времени. Она держится значительно дольше и вдруг,в один прекрасный момент ты замечаешь микро точку..... но эта дрянь,до того как ты её заметил,росла.... как бы изнутри. Тряпочкой её опять же уже не побороть

puphik 16-08-2013 23:40

quote: Originally posted by Nikolay_K:

анодируют и стали в том числе, а не только алюминий.

Много раз встречал такое.



Хотите поспорить?
Вопросы терминологии самые сложные. Если коротко, то так.
Создание на поверхности металла защитной окисной пленки называют оксидированием .
Существует несколько методов оксидирования, таких как термическое, химическое и электрохимическое.
Электрохимическое оксидирование , это когда изделие опускают в ванну с электролитом и пропускают постоянный ток (создают разность потенциалов определенной полярности).
Вот если делать все то же самое с алюминиевым изделием, то это называется анодированием .

Nikolay_K 16-08-2013 23:41

quote: Originally posted by falcone:

Рецепт от ОРВИ,а случай с Ванкроном это простите Грипп

Во время 20-ти минутной чистки рыбы,на клике появляется синдромы из названия темы - питтинговая коррозия Точки глубокие и для их устранения потребуются абразивные средства....тряпочкой к сожалению не обойтись
Не полировать же алмазной пастой после каждой операции


Может быть можно обойтись чем-нибудь типа X15TN?
(http://www.aubertduval.com/upl...X15TN_GB_01.pdf)

Nikolay_K 16-08-2013 23:48

quote: Originally posted by puphik:

Электрохимическое оксидирование, это когда изделие опускают в ванну с электролитом и пропускают постоянный ток (создают разность потенциалов определенной полярности).
Вот если делать все то же самое с алюминиевым изделием, то это называется анодированием.

quote:
Ferrous metals are commonly anodized electrolytically in nitric acid, or by treatment with red fuming nitric acid, to form hard black ferric oxide.
This oxide remains conformal even when plated on wire and the wire is bent.


http://www.findpatent.ru/patent/216/2163272.html

falcone 17-08-2013 12:20

quote: Originally posted by Nikolay_K:

неужели для чистки и разделки рыбы так нужен Ванкрон или ДИ90?


Если коротко,то да,нужен. Я по крайней мере уже не соскочу со злых порошков.... да и коррозийностойкие порошки типа М390-ой после того же Ванкрона,мне уже кажутся скучноватыми.
Желание победить ржу каким либо покрытием есть большое,но если решения не найдётся,то буду пользовать ржавый злой порошок

Nikolay_K 17-08-2013 12:54

quote: Originally posted by falcone:

Желание победить ржу каким либо покрытием есть большое,но если решения не найдётся

решение давно уже есть, но оно дорогостоящее и технологически сложное

это DLC покрытие как, например, на ROCKSTEAD

falcone 17-08-2013 01:41

Очень интересная штука это покрытие,но цена установки чуть смутила http://www.sstorg.ru/market/vi...=5990&id=615472 в "55 667 068,00 руб.в том числе НДС" да и крупновата она в гараж не поместится
http://forvak.com/p/vakuumnaya...ryitiy-dlc.html
А штука конечно интересная.

puphik 17-08-2013 02:45

quote: Originally posted by Nikolay_K:

термин "анодирование" не привязан к алюнимию, он относится к любым металлам:


Я уже упоминал, что вопросы терминологии одни из самых трудно разрешимых.
Если судить с точки зрения русского языка, то анодирование и электрохимическое оксидирование суть один и тот же процесс. Однако, есть такое понятие, как устоявшиеся общепринятые термины. Обратите внимание на список литературы в первой ссылке (вторую ссылку рассматривать не буду, т.к. сейчас говорим о русскоязычных терминах, которые могут отличаться от иностранных), то увидите, что термин "анодирование" идет в контексте с алюминием.
Если Вы считаете, что анодирование и электрохимическое оксидирование
синонимы - это Ваше право. Это только терминология, суть процессов от этого не меняется. А главное, чтобы Вы правильно поняли суть процесса: создание на поверхности металла защитной окисной пленки электрохимическим методом.
quote: Originally posted by Nikolay_K:

А вот пример применения термина анодирование к стали в русскоязычной литературе:
http://www.findpatent.ru/patent/216/2163272.html


Это пример современной безграмотности. Посудите сами, если анодирование - это создание защитной окисной пленки на поверхности металла, то оно не может работать на углеродистой стали, т.к. железо не образует сплошной окисной пленки, отгораживающей металл он воздействия среды. Пористая получается пленка. В изобретении описан совершенно другой процесс, не имеющий к электрохимическому оксидированию (анодированию) никакого отношения. Просто автор позволил себе использовать этот термин. Также как Вы позволили себе использовать термин "питтинг" для коррозионного поражения Вашего ножа.
К сожалению, научный уровень статей в Википедии частенько желает быть лучшим.

Русский самурай 17-08-2013 03:16

А почему бы не хромировать клинки?

anakhoret 17-08-2013 08:42

Русский самурай 17-08-2013 09:09

quote: Originally posted by anakhoret:

и РК?Там подложка медная идёт...толщина приличная получиццо)


на чем медная подложка? Под хромом? Нет там подложки. Под никелем - может быть и есть. Но с никелем не сталкивался. А с хромом - все ножи из коррозирующей стали, что я продаю - все в хроме с недавнего времени. И Ванадис, и быстрорезы, и Хашки. Надо будет вытащить на Ганзу несколько ножей на продажу, все руки не доходят..ибо и так спрос большой. А зачем хромировать РК? ее же точить надоть))

puphik 17-08-2013 10:24

quote: Originally posted by Русский самурай:
А почему бы не хромировать клинки?

Хромируют иногда (есть у меня такой клиночек), но это не решает проблемы.
quote: Originally posted by Русский самурай:
А зачем хромировать РК? ее же точить надоть))

В этом случае образуется гальваническая пара, в которой режущая кромка является анодом и корродирует гораздо быстрее, чем если бы хромирования не было. Все равно за ножом нужно ухаживать так же, как и за углеродкой без покрытия.

oldTor 17-08-2013 11:38

Фаски, образующие РК на углеродке полезно доводить почище, ради лучшего предохранения от ржавления, т.к. более гладкая поверхность, которую к тому же гораздо проще очистить как следует после использования, показывает лучшую устойчивость. Если при этом не хватает агрессии реза, то крупные рисочки наносятся уже после тщательной доводки. Такой способ очень и очень неплохо работает.

Поделиться: