Стандартная теплота образования. Расчет по стандартным теплотам сгорания Теплотой образования называют

некоторых веществ

Вещество Состояние кДж/моль Вещество Состояние кДж/моль
С 2 Н 2 г +226,75 СО г -110,52
CS 2 г +115,28 СН 3 ОН г -201,17
NO г +90,37 С 2 Н 5 OН г -235,31
С 6 Н 6 г +82,93 H 2 O г -241,83
С 2 Н 4 г +52,28 Н 2 О ж -285,84
H 2 S г -20,15 NH 4 C1 к -315,39
NН 3 г -46,19 СО 2 г -393,51
СН 4 г -74,85 Fе 2 О 3 к -822,10
С 2 Н 6 г -84,67 TiO 2 к -943,90
НС1 г -92,31 Са(ОН) 2 к -986,50
А1 2 O 3 к -1669,80

Пример 2 . Реакция горения этана выражается уравнением:

С 2 Н 6 (г) + 3 1 / 2 О 2 = 2СО 2 (г)+3Н 2 О(ж); ∆Hх.р.= -1559,87 кДж

Вычислите теплоту образования этана, если известны теплоты образования СO 2 (г) и Н 2 O(ж) (см. табл. 15).

Решение. Теплотой образования (энтальпией) данного соединения называют тепловой эффект реакции образования 1 моль этого соединения из простых веществ, взятых в их устойчивом состоянии при данных условиях.

Обычно теплоту образования относят к стандартному состоянию, т.е. 25° С (298 К) и 1,013×10 5 Па и обозначают через .Так как тепловой эффект с температурой изменяется незначительно, то в дальнейшем индексы опускаются и тепловой эффект обозначается через Н. Следовательно, нужно вычислить тепловой эффект реакции, термохимическое уравнение которой имеет вид

2С(графит)+3Н 2 (г) = С 2 Н 6 (г); ∆H = ?

исходя из следующих данных:

а) С 2 Н 6 (г) + 3 1 / 2 О 2 (г)=2СО 2 (г)+3Н 2 О(ж); ∆H =-1559,87 кДж

б) 2С(графит)+О 2 (г)= СО 2 (г); ∆H =-393,51 кДж

в) Н 2 (г)+ 1 / 2 О 2 =Н 2 О(ж); ∆H =-285,84 кДж

На основании закона Гесса с термохимическими уравнениями можно оперировать так же, как и с алгебраическими. Для получения искомого результата следует уравнение (б) умножить на 2, уравнение (в) - на 3, а затем сумму этих уравнений вычитают из уравнения (а):

С 2 Н 6 + 3 1 / 2 О 2 -2С-2О 2 -3Н 2 - 3 / 2 О 2 =2СО 2 +3Н 2 О-2СО 2 -3Н 2 О

∆H =-1559,87-2(-393,51)-3(-285,84)= +84,67 кДж;

∆H =-1559,87+787,02+857,52;

С 2 Н 6 =2С+3Н 2 ; ∆H = +84,67 кДж

Так как теплота образования равна теплоте разложения с обратным знаком, то . К тому же результату придем, если для решения задачи применить вывод из закона Гесса:

∆Hх.р. =2∆Hсо 2 +3∆Hн 2 о-∆Hс 2 н 6 -31/2∆Hо 2

Учитывая, что теплоты образования простых веществ условно приняты равными нулю

∆Hс 2 н 6 =2∆Hсо 2 +3∆Hн 2 о-∆Hх.р.

∆Hс 2 н 6 =2(-393,51)+3(-258,84)+1559,87=-84,67;

∆H обр с 2 н 6(г) =-84,67 кДж

Пример 3. Реакция горения этилового спирта выражается термохимическим уравнением

С 2 Н 5 ОН(ж)+3О 2 (г)=2СО 2 (г)+3Н 2 О(ж); ∆H=?

Вычислите тепловой эффект реакции, если известно, что молярная теплота парообразования С 2 Н 5 OН(ж) равна +42,36 кДж, а теплоты образования С 2 Н 5 OН(г), СO 2 (г), Н 2 O(ж) см. табл. 15.

Решение. Для определения Н реакции необходимо знать теплоту образования С 2 Н 5 OН(ж). Последнюю находим из данных:

С 2 Н 5 ОН(ж) = С 2 Н 5 ОН(г); ∆H = + 42,36 кДж

42,36 = - 235,31- ∆Hс 2 н 5 он (ж);

∆Hс 2 н 5 он (ж) = - 235,31-42,36 = -277,67 кДж

Вычисляем H реакции, применяя следствие из закона Гесса:

∆Hх.р.=2(-393,51)+3(-285,84)+277,67=-1366,87 кДж

5.5. Химическое сродство. Энтропия химических реакций. Энергия Гиббса. Самопроизвольно могут протекать реакции, сопровождаю­щиеся не только выделением, но и поглощением теплоты.

Реакция, идущая при данной температуре с выделением теплоты, при другой температуре проходит с поглощением теплоты. Здесь проявляется диалектический закон единства и борьбы противоположностей. С одной стороны, система стремится к упорядочению (агрегации), к уменьшению Н; с другой стороны, система стремится к беспорядку (дезагрегации). Первая тенденция растет с понижением, а вторая - с повышением температуры. Тенденцию к беспорядку характеризует величина, которую называют энтропией.

Энтропия S, так же как внутренняя энергия U, энтальпия Н, объем V и др., является свойством вещества, пропорциональным его количеству. S, U, H, V обладают аддитивными свойствами, т.е. при соприкосновении системы суммируются. Энтропия отражает движение частиц вещества и является мерой неупорядоченности системы. Она возрастает с увеличением движения частиц: при нагревании, испарении, плавлении, расширении газа, при ослаблении или разрыве связей между атомами и т.п. Процессы, связанные с упорядоченностью системы: конденсация, кристаллизация, сжатие, упрочнение связей, полимеризация и т.п.- ведут к уменьшению энтропии. Энтропия является функцией состояния, т.е. ее изменение зависит только от начального (S 1) и конечного (S 2) состояний и не зависит от пути процесса:

∆Sx.p.=∑S 0 прод - ∑S 0 исх

если S 2 >S 1 , то ∆S>0

если S 2 Так как энтропия увеличивается с повышением температуры, то можно считать, что мера беспорядка равна »T S. Энтропия выражается в Дж/(моль.К).

Таким образом, движущая сила процесса складывается из двух сил: стремления к упорядочению (Н) и стремления к беспорядку (TS). При р = const и Т = const общую движущую силу процесса, которую обозначают G, можно найти из соотношения

∆G=(H 2 -H 1)-(TS 2 -TS 1); ∆G=∆H-T∆S

где: величина G называется изобарно-изотермическим потенци­алом или энергией Гиббса .

Мерой химического сродства является убыль энергии Гиббса ( G), которая зависит от природы вещества, его количества и температуры.

Энергия Гиббса является функцией состояния, поэтому

∆Gx.p.=∑ ∆G o б p прод -∑∆G o б p исх (3)

Самопроизвольно протекающие процессы идут в сторону уменьшения потенциала и, в частности, в сторону уменьшения G. Если G < 0, процесс принципиально осуществим; если G>0, процесс самопроизвольно проходить не может. Чем меньше G, тем сильнее стремление к протеканию данного процесса и тем дальше он от состояния равновесия, при котором G = 0 и H= T S.

Из соотношения G = H – T S видно, что самопроизвольно могут протекать и процессы, для которых H>0 (эндотерми­ческие). Это возможно, когда S >0, но |T S| > | H| и тогда G<0. С другой стороны, экзотермические реакции ( H<0) самопроиз­вольно не протекают, если при S<0 окажется, что G>0.

5.6. Второй и третий законы термодинамики. Для систем, которые не обмениваются с окружающей средой ни энергией, ни веществом (изолированные системы), второй закон термодинамики имеет следующую формулировку: в изолированных системах са­мопроизвольно идут только такие процессы, которые сопровождаются возрастанием энтропии: AS > 0.

Второй закон термодинамики имеет статистический характер, т.е.
справедлив лишь для систем, состоящих из очень большого числа
частиц.

Однако, если в системе протекает химическая реакция, то система обменивается энергией с окружающей средой, т.е. не является изоли­рованной. Химические реакции обычно сопровождаются изменением как энтропии, так и энтальпии.

В отличие от других термодинамических функций, можно определить не только изменение, но абсолютное значение энтропии. Это вытекает из высказанного в 1911 г. М. Планком постулата, согласно которому «при абсолютном нуле энтропия идеального кристалла равна нулю». Этот постулат получил название третьего закона термодинамики.

Пример 1. В каком состоянии энтропия 1 моль вещества больше при одинаковой температуре: в кристаллическом или парообразном?

Решение. Энтропия есть мера неупорядоченности состояния вещества. В кристалле частицы (атомы, ионы) расположены упорядоченно и могут находиться лишь в определенных точках пространства, а для газа таких ограничений нет. Объем 1 моль газа гораздо больше объема 1 моль кристаллического вещества; возможность хаотичного движения молекул газа больше. А так как энтропию можно рассматривать как количественную меру хаотичности атомно-молекулярной структуры вещества, то энтропия 1 моль паров вещества больше энтропии 1 моль его кристаллов при одинаковой температуре.

Пример 2 . Прямая или обратная реакция будет протекать при стандартных условиях в системе

СН 4 (г)+СО 2 ↔ 2СО(г)+2Н 2 (г)

Решение. Вычислим прямой реакции. Значения соответствующих веществ приведены в табл. 16. Зная, что G есть функция состояния и что G для простых веществ, находящихся в устойчивых при стандартных условиях агрегатных состояниях, равны нулю, находим процесса:

∆G 0 298 = 2 (-137,27) +2 (0) - (-50,79-394,38) = +170,63 кДж

То, что > 0, указывает на невозможность самопроиз­вольного протекания прямой реакции при Т = 298К и давлении взятых газов равном 1,013 ∙ 10 5 Па (760 мм рт. ст. = 1 атм).

Таблица 16

Стандартная энергия Гиббса образования некоторых веществ

Вещество Состояние , кДж/моль Вещество Состояние , кДж/моль
ВаСО 3 к -1138,8 FeO к -244,3
СаСО 3 к -1128,75 Н 2 О ж -237,19
Fе 3 O 4 к -1014,2 Н 2 O г -228,59
ВеСО 3 к -944,75 PbO 2 к -219,0
СаО к -604,2 СО г -137,27
ВеО к -581,61 СН 4 г -50,79
NaF к -541,0 NO 2 г +51,84
ВаО к -528,4 NO г +86,69
СО 2 г -394,38 C 2 H 2 г +209,20
NaCl к -384,03
ZnO к -318,2

Таблица17

Стандартные абсолютные энтропии некоторых веществ

Вещество Состояние , Дж/(моль.К) вещество Состояние ,Дж/(моль.К)
С Алмаз 2,44 Н 2 O г 188,72
С Графит 5,69 N 2 г 191,49
Fe к 27,2 NН 3 г 192,50
Ti к 30,7 СО г 197,91
S Ромб 31,9 с 2 H 2 г 200,82
TiO 2 к 50,3 O 2 г 205,03
FeO к 54,0 H 2 S г 205,64
H 2 O ж 69,94 NO г 210,20
Fе 2 О 3 к 89,96 CO 2 г 213,65
NH 4 C1 к 94,5 C 2 H 4 г 219,45
СН 3 ОН ж 126,8 Cl 2 г 222,95
Н 2 г 130,59 NO 2 г 240,46
Fе 3 O 4 к 146,4 РС1 3 г 311,66
СН 4 г 186,19 PCl 5 г 352,71
НС1 г 186,68

Пример 3 . На основании стандартных теплот образования (см. табл. 15) и абсолютных стандартных энтропий веществ (табл.17) вычислите реакции, протекающей по уравнению

Стандартной теплотой образования (энтальпией образования) вещества называется энтальпия реакции образования 1 моля этого вещества из элементов (простых веществ, то есть состоящих из атомов одного вида), находящихся в наиболее устойчивом стандартном состоянии. Стандартные энтальпии образования веществ (кДж/моль) приводятся в справочниках. При использовании справочных значений необходимо обращать внимание на фазовое состояние веществ, участвующих в реакции. Энтальпия образования наиболее устойчивых простых веществ равна 0.

Следствие из закона Гесса о расчете тепловых эффектов химических реакций по теплотам образования : стандартный тепловой эффект химической реакции равен разности теплот образования продуктов реакции и теплот образования исходных веществ с учетом стехиометрических коэффициентов (количества молей) реагентов :

CH 4 + 2 CO = 3 C ( графит ) + 2 H 2 O.

газ газ тв. газ

Теплоты образования веществ в указанных фазовых состояниях приведены в табл. 1.2.

Таблица 1.2

Теплоты образования веществ

Р е ш е н и е

Так как реакция проходит при P = const, то стандартный тепловой эффект находим в виде изменения энтальпии по известным теплотам образования по следствию из закона Гесса (формула (1.17):

ΔН о 298 = { 2 · (–241,81) + 3·0} – {–74,85 + 2 · (–110,53)} = –187,71 кДж = = –187710 Дж.

ΔН о 298 < 0, реакция является экзотермической, протекает с выделением теплоты.

Изменение внутренней энергии находим на основании уравнения (1.16):

ΔU о 298 = ΔH о 298 Δ ν · RT .

Для данной реакции изменений числа молей газообразных веществ за счет прохождения химической реакции Δν = 2 – (1 + 2) = –1; Т = 298 К, тогда

Δ U о 298 = –187710 – (–1) · 8,314· 298 = –185232 Дж.

Расчет стандартнвх тепловых эффектов химических реакций по стандартным теплотам сгорания веществ, участвующих в реакции

Стандартной теплотой сгорания (энтальпией сгорания) вещества называется тепловой эффект полного окисления 1 моля данного вещества (до высших оксидов или специально указываемых соединений) кислородом при условии, что исходные и конечные вещества имеют стандартную температуру. Стандартные энтальпии сгорания веществ
(кДж/моль) приводятся в справочниках. При использовании справочной величины необходимо обратить внимание на знак величины энтальпии реакции сгорания, которая всегда является экзотермической (Δ H <0), а в таблицах указаны величины
.Энтальпии сгорания высших оксидов (например, воды и диоксида углерода) равны 0.

Следствие из закона Гесса о расчете тепловых эффектов химических реакций по теплотам сгорания : стандартный тепловой эффект химической реакции равен разности теплот сгорания исходных веществ и теплот сгорания продуктов реакции с учетом стехиометрических коэффициентов (количества молей) реагентов:

C 2 H 4 + H 2 O = С 2 Н 5 ОН.

Тепловым эффектом реакции называется количество теплоты, которое выделяется или поглощается системой в ходе реакции .

где , - стехиометрические коэффициенты продуктов реакции и исходных веществ; , - стандартные энтальпии образования продуктов реакции и исходных веществ. Теплота образования . Здесь индекс означает formation (образование), а ноль, что величина относится к стандартному состоянию вещества.

Теплота образования веществ определяется по справочникам или рассчитывается исходя из структуры вещества.

Теплотой сгорания называется количество тепла, выделяющееся при полном сгорании единицы количества вещества при условии, что начальные и конечные продукты находятся в стандартных условиях.

Различают:

· молярную - для одного моля (кДж/моль),

· массовую − для одного килограмма (кДж/кг),

· объемную − для одного кубического метра вещества (кДж/м³) теплоту сгорания.

В зависимости от агрегатного состояния воды, образовавшейся в процессе горения, различают высшую и низшую теплоту сгорания.

Высшей теплотой сгорания называется количество тепла, которое выделяется при полном сгорании единицы количества горючего вещества, включая тепло конденсации водяных паров.

Низшей теплотой сгорания называется количество тепла, которое выделяется при полном сгорании единицы количества горючего вещества при условии, что вода в продуктах горения находится в газообразном состоянии.

Молярную теплоту сгорания рассчитывают в соответствии с законом Гесса . Для пересчета молярной теплоты сгорания в массовую можно использовать формулу:

где - молярная масса горючего вещества, .

Для веществ в газообразном состоянии при пересчете из стандартной теплоты сгорания в объемную используют формулу:

где - молярный объем газа, который при стандартных условиях равен .



Достаточно точные результаты для сложных горючих веществ или смесей дает формула Менделеева для высшей теплоты сгорания:

где , ; , , , , - содержание в горючем веществе соответственно углерода, водорода, серы, кислорода и азота в масс. процентах.

Для низшей теплоты сгорания

где , ; - содержание влаги в горючем веществе в масс. процентах.

Расчет теплоты сгорания горючих смесей выполняют по формуле

где - низшая теплота сгорания горючей смеси, ; - объемная доля -ого горючего в смеси; - низшая теплота сгорания -ого горючего в смеси, .

Расчет теплоты сгорания газо-воздушных смесей проводят с использованием формулы

где - низшая теплота сгорания горючего вещества, ; - концентрация горючего вещества в газо-воздушной смеси, объемная доля; - теплота сгорания газо-воздушной смеси, .

Теплоёмкость тела называется физическая величина, определяющая отношение бесконечно малого количества теплоты , полученного телом, к соответствующему приращению его температуры

Количество теплоты, подведенное к телу или отведенное от него, всегда пропорционально количеству вещества.

Удельной теплоёмкостью называется теплоёмкость, отнесённая к единичному количеству вещества. Количество вещества может быть измерено в килограммах, кубических метрах и молях. Поэтому различают массовую, объёмную и молярную теплоёмкость.

Обозначим:

· - молярная теплоемкость , . Это количество теплоты, которое нужно подвесит к 1 молю вещества, что его температура повысилась на 1 Кельвин;

· - массовая теплоемкость , . Это количество теплоты, которое нужно подвесит к 1 килограмму вещества, что его температура повысилась на 1 Кельвин;

· - объемная теплоемкость , . Это количество теплоты, которое нужно подвесит к 1 кубическому метру вещества, что его температура повысилась на 1 Кельвин.

Связь между молярной и массовой теплоемкостями выражается формулой

где - молярная масса вещества. Объемная теплоемкость выражается через молярную следующим образом

где - молярный объем газа при нормальных условиях.

Теплоемкость тела зависит от процесса, в ходе которого осуществляется подвод теплоты.

Теплоемкостью тела при постоянном давлении называют отношение удельного (на 1 моль вещества) количества теплоты, подведенной в изобарном процессе, к изменению температуры тела.

Теплоемкостью тела при постоянном объеме называют отношение удельного (на 1 моль вещества) количества теплоты, подведенной в изохорном процессе, к изменению температуры тела.

Теплоемкость идеальных газов равна

где - число степеней свободы молекулы. Связь между изобарной и изохорной теплоёмкостями идеальных газов определяется уравнением Майера

где -универсальная газовая постоянная.

Теплоемкость веществ в твердой фазе для условий близких к нормальным по закону Дюлонга-Пти равна

Вследствие того что теплоемкость зависит от температуры, расход теплоты для одинакового повышения температуры меня­ется (рис. 3.1).

Истинной теплоемкостью называют теплоемкость, которая при определенном термодинамическом процессе, выражается следующей формулой

где - обозначает процесс, при котором измеряется теплоемкость. Параметр может принимать значения , и др.

Рис. 3.1. Зависимость теплоемкости от температуры

Средней теплоемкостью называется отношение количества теплоты, сообщаемое телу в заданном процессе, к изменению температуры при условии, что разность температур является конечной величиной. При известной зависимости истинной теплоемкости от температуры среднюю теплоемкость на интервале температур от до можно найти с помощью теоремы о среднем значении

где - средняя теплоемкость, -истинная теплоемкость.

В экспериментальных исследованиях теплоемкости веществ зачастую находят среднюю теплоемкость как функцию верхнего предела, при фиксированном значении нижнего предела, который принимают равным

Зависимости средних теплоемкостей газов от температуры верхнего предела приведены в таблице 3.1.

Теплоемкость газовой смеси зависит от состава смеси и теплоемкостей компонент. Обозначим: - молярная доля компонента в смеси; - объемная доля; - массовая доля. Здесь - количество -ого компонента в моля, м 3 , кг соответственно. Теплоемкость газовой смеси можно определить по формулам

где , , - средние молярная, массовая и объемная теплоемкости -ого компонента смеси.

Таблица 3.1.

Название газа Формулы для определения средних мольных теплоемкостей отдельных газов при постоянном объеме, Дж/(моль·град), для температур, 0 С
от 0 до 1500 от 1501 до 2800
Воздух
Кислород
Азот
Водород
Оксид углерода
Углекислый газ
Водяной пар

В тепловых машинах и двигателях, вначале каждого цикла в камеру сгорания подается порция свежей смеси, которую называют свежим зарядом . Однако, как правило, в камере сгорания остаются отработавшие газы от предыдущего цикла.

Коэффициентом остаточных газов называется отношение

где - количество моль остаточных газов, - количество моль свежего заряда. Смесь в камере сгорания остаточных газов со свежим зарядом называется рабочей смесью . Теплоемкость рабочей смеси рассчитывается по формуле

где , - средние теплоемкости свежего заряда и остаточных газов при температуре рабочей смеси; - коэффициент остаточных газов.

Тепло, выделяющееся в зоне горения, расходуется на нагрев продуктов сгорания и тепло потери (к последним относятся предварительный нагрев горючего вещества и излучение из зоны горения в окружающую среду). Максимальная температура, до которой нагреваются продукты горения, называется температурой горения.

В зависимости от условий, в которых протекает процесс горения различают калориметрическую , адиабатическую, теоретическую , и действительную температуры горения .

Под калориметрической температурой горения понимают температуру, до которой нагреваются продукты горения при соблюдении следующих условий:

· все тепло, выделившееся в процессе реакции, идет на нагревание продуктов горения;

· происходит полное сгорание стехиометрической горючей смеси ();

· в процессе образования продуктов горения не происходит их диссоциация;

· горючая смесь находится при начальной температуре 273К и давлении 101,3 кПа.

Адиабатическая температура горения определяется для не стехиометрической горючей смеси ().

Теоретическая температура горения отличается от калориметрической тем, что в расчетах учитываются потери тепла в следствии диссоциации продуктов горения.

Действительная температура горения - это температура, до которой нагреваются продукты горения в реальных условиях.

Рассмотрим расчет только калориметрической и адиабатической температуры горения с небольшой поправкой. Будем считать, что начальная температура исходной смеси отличается от . Обозначим и количества моль рабочей смеси и смеси продуктов горения. Тогда тепловой баланс горения при постоянном давлении можно записать таким образом

где , - средние теплоемкости исходной смеси и продуктов горения; - теплота, выделяющаяся при сгорании 1 моля рабочей смеси, ; и - температуры рабочей смеси и продуктов горения соответственно. По отношению к одному молю рабочей смеси формулу (3.20) можно представить в виде

где - коэффициент молекулярного изменения состава смеси. Из уравнения теплового баланса находят калориметрическую и адиабатическую температуры горения.

Давление при взрыве можно найти с помощью уравнения Клайперона-Менделеева, учитывая, что объем в процессе не меняется.

Практическая работа №3

«Расчет теплоты сгорания веществ»

Цель: Усвоить основные понятия энергетического баланса процессов горения. Научиться делать расчет теплоты сгорания для разного типа горючего вещества (индивидуальные вещества и смеси; сложные вещества, представленные элементарным составом).

Расчетные формулы и алгоритмы

1. Для расчета теплоты сгорания индивидуальных веществ используется формула (3.1). Сначала составляют уравнение реакции горения, с помощью которого определяют стехиометрические коэффициенты и продукты. Затем по таблице (см. таблицу 3.1) находят стандартных энтальпии образования исходных веществ и продуктов реакции. Найденные параметры, подставляются в формулу (3.1) и вычисляется теплота сгорания горючего вещества.

2. Теплоту сгорания сложных веществ находят по формулам Д. И. Менделеева (3.4) и (3.5). Для выполнения расчета необходимо знать только массовые доли элементов в процентах. Теплота сгорания вычисляется в кДж/кг.

3. Для расчета горючих смесей пользуются формулами (3.1) – (3.6). Сначала находят низшую теплоту сгорания каждого горючего газа как индивидуального вещества по формуле (3.2) или как сложного вещества по формулам (3.4),(3.5). Для перехода к объемной теплоте сгорания применяют формулы (3.2),(3.3). Завершают расчет вычислением низшей теплоты сгорания смеси горючих по формуле (3.6).

4. Для определения теплоты сгорания 1 м 3 газо-воздушной смеси вычисляют объемную долю горючих газов в присутствии воздуха, количество которого зависит от . Затем с помощью формулы (3.7) вычисляют теплоту сгорания газо-воздушной смеси.

Пример 3.1. Определить низшую теплоту сгорания ацетилена.

Решение. Запишем уравнение горения ацетилена.

В соответствии с уравнением стехиометрические коэффициенты равны , , , . Используя приложение 3.1 находим стандартные энтальпии образования веществ реакции: , , , . По формуле (3.1) вычисляем низшую теплоту сгорания ацетилена

Для расчета количества тепла, выделяющегося при горении 1 м 3 ацетилена, необходимо полученную величину разделить на молярный объем в стандартных условия (3.3):

Ответ: ;

Решение. По формулам Менделеева (3.4) и (3.5) находим

Ответ: .

Пример 3.3. Определить теплоту сгорания газовой смеси, состоящей из - 40%, - 20%, - 15%, - 5%, - 10%, - 10%.

Решение. Из этих газов горючими являются , , , . Выпишем для каждого горючего уравнение реакции с кислородом:

Стандартные энтальпии образования веществ находим с помощью табличных данных таблице 3.2.

; ; ; ; ; ; ; .

По формуле (3.1) в соответствии с уравнениями горения (1)-(4) находим теплоту сгорания, :

Для смеси горючих газов используем формулу (3.6), учитывая, что молярные и объемные доли совпадают. В результате вычислений получаем низшую теплоту сгорания смеси газов

При сгорании 1 м 3 такой смеси газов выделяется теплота равная

Ответ: ; .

Решение. Записываем уравнение горения пропана

В соответствии в уравнением реакции на 1 м 3 пропана должно приходиться м 3 воздуха для стехиометрической смеси. Учитывая, что на 1 м 3 пропана фактически расходуется м 3 воздуха. Таким образом, в 1 м 3 в пропан-воздушной смеси объемная доля пропана составит

Низшую теплоту сгорания пропана найдем по формуле (3.1). Стандартная энтальпия образования пропана может быть определена по таблице 3.2.

Теплота сгорания пропана равна

Низшую теплоту сгорания пропан-воздушной смеси можно определить по формуле (3.7)

1536,21

B 5 H 9 (ж) H - (г) 139,03 B 10 H 14 (г) Mg (кр) C (г) 715,1 MgO (кр) -601,5 C (к, алмаз) 1,83 Mg(OH) 2 (кр) -924,7 C (к, графит) MgСO 3 (кр) -1095,85 CH 3 OH (г) -202,0 N 2 (г) CH 3 OH (ж) -239,45 N (г) 472,71 CH 4 (г) -74,81 NH 3 (г) -46,2 CO (г) -110,52 NH 3 (ж) -69,87 CO 2 (г) -393,51 NO (г) 90,2 C 2 H 2 (г) 226,0 NO 2 (г) 33,5 C 2 H 4 (г) 52,5 N 2 H 4 (г) 95,3 C 2 H 6 (г) -84,7 N 2 O 5 (кр) -42,7 C 2 H 5 OH (г) -234,6 N 2 O (г) 82,01 C 2 H 5 OH (ж) -276,9 N 2 O 4 (г) 9,6 C 6 H 6 (ж) 49,03 N 2 O 4 (ж) -19,0 C 6 H 12 (ж) -156,23 HNO 3 (ж) -173,00 HCN (г) 134,7 HNO 3 (г) -133,91 HNCS (г) 127,61 Ni (кр) CS 2 (г) 116,7 NiO (кр) -239,74 CS 2 (ж) 88,70 NiS (кр) -79,50 Fe (кр) NiSO 4 (кр) -873,49 NiS (кр) -79,50 TiO 2 (к, рутил) -943,9 O 2 (г) TiO 2 (к, анатаз) -933,03 O (г) 249,2 Zr (кр.) O + (г) 1568,78 Zr(OH) 4 (кр) -1661 O - (г) 101,43 ZrO 2 (кр) -1100,6 O 3 (г) 142,2 C 3 H 4 (г) 192,13 OH - (г) -134,5 C 3 H 6 (г) 20,41 H 2 O (кр) -291,85 C 3 H 8 (г) пропан -103,85 H 2 O (г) -241,82 C 4 H 6 (г) 162,21 H 2 O (ж) -285,83 C 4 H 8 (г) 1-бутен -0,13 H 2 O 2 (ж) -187,78 C 4 H 8 (г) циклобутан 26,65 H 2 O 2 (г) -135,88 C 4 H 10 (г) бутан -126,15 S (к, монокл) 0,377 C 5 H 12 (г) пентан -173,33 S (к, ромб) C 5 H 12 (ж) -179,28 S (г) 278,81 C 6 H 6 (ж) бензол 49,03 SO 2 (г) -296,90 C 6 H 6 (г) бензол 82,93 SO 3 (г) -395,8 C 6 H 12 циклогексан -156,23 SO 3 (ж) -439,0 C 6 H 14 (ж) гексан -198,82 H 2 S (г) -20,9 C 6 H 14 (г) гексан -167,19 H 2 SO 4 (ж) -814,2 C 7 H 8 (ж) толуол 12,01 Si (кр.) C 7 H 8 (г) толуол 50,00 SiC (кр.) -63 C 7 H 16 (ж) гептан -224,54 SiO 2 (к, ) -910,94 C 7 H 16 (г) гептан -187,78 SiO 2 (стекл) -903,49 C 8 H 6 (г) этинилбензол 327,27 Ti (кр) C 8 H 10 (ж) этилбензол -12,48 C 8 H 18 (г) октан -208,45 C 4 H 10 O (ж) бутанол -325,56 C 10 H 8 (кр) нафталин 78,07 C 4 H 10 O (г) бутанол -274,43 C 10 H 8 (ж) нафталин C 4 H 10 O (ж) диэтиловый эфир -279,49 C 10 H 8 (г) нафталин 150,96 C 4 H 10 O(г) диэтиловый эфир -252,21 C 12 H 10 (ж) дифенил 119,32 C 5 H 12 O (ж) амиловый спирт -357,94 C 12 H 10 (г) дифенил 182,08 C 5 H 12 O (г) амиловый спирт -302,38 CH 4 O (ж) метанол -238,57 CH 6 N 2 (ж) метилгидразин 53,14 CH 4 O (г) метанол -201,00 CH 6 N 2 (г) метилгидразин 85,35 C 2 H 4 O 2 (ж) уксусная кислота -484,09 C 5 H 5 N (ж) пиридин 99,96 C 2 H 4 O 2 (г) уксусная кислота -434,84 C 5 H 5 N (г) пиридин 140,16 C 2 H 6 O (ж) этанол -276,98 C 6 H 5 NO 2 (ж) нитробензол 15,90 C 2 H 6 O (г) этанол -234,80 C 6 H 7 N (ж) анилин 31,09 C 2 H 6 O 2 (ж.) этиленгликоль -454,90 C 6 H 7 N (г) анилин 86,86 C 2 H 6 O 2 (г) этиленгликоль -389,32 C 2 H 6 S 2 (ж) диметилдисульфид -62,59 C 3 H 6 O (ж) ацетон -248,11 C 2 H 6 S 2 (г) диметилдисульфид -24,14 C 3 H 6 O (г) ацетон -217,57 C 4 H 4 S (ж) тиофен 81,04 C 3 H 8 O (ж) 1-пропанол -304,55 C 4 H 4 S (г) тиофен 115,73 C 3 H 8 O (г) 1-пропанол -257,53

Таблица 3.3. Параметры к контрольной задаче №3.1

Вариант Условие Вариант Условие Вариант Условие
1. CH 3 OH 11. C 4 H 8 21. C 8 H 18
2. C 2 H 5 OH 12. C 4 H 10 22. C 10 H 8
3. NH 3 13. C 3 H 8 23. C 12 H 10
4. SO 3 14. C 7 H 8 24. CH 4 O
5. HNO 3 15. C 7 H 16 25. C 2 H 4 O 2
6. C 3 H 4 16. C 5 H 12 26. C 2 H 6 O
7. H 2 S 17. C 6 H 12 27. C 3 H 6 O
8. C 5 H 5 N 18. C 6 H 14 28. C 4 H 10 O
9. С 2 H 5 O 19. C 8 H 6 29. CH 6 N 2
10. C 3 H 6 20. C 8 H 10 30. C 6 H 7 N

Таблица 3.4. Параметры к контрольной задаче №3.2 (W - влага )

Стандартная теплота образования (DН о f , 298) - это тепловой эффект реакции образования 1 моля вещества из простых веществ, взятых в их обычном соотношении и при стандартных условиях: Р = 1 атм, Т = 298 К.

Считают, что простые вещества реагируют в виде той модификации и в том агрегатном состоянии, которые отвечают наиболее устойчивому состоянию элементов при данных Р и Т. При этих условиях теплота образования принимается равной нулю (например, для О 2 , N 2 , S, C ...). Соединения, для которых теплота образования DН о f , 298 положительна - эндотермические , для которых DН о f , 298 < 0 - экзотермические .

Зная стандартные теплоты образования всех участников реакции, можно рассчитать тепловой эффект самой реакции. Следствие из закона Гесса : тепловой эффект химической реакции равен сумме стандартных теплот образования продуктов реакции за вычетом суммы стандартных теплот образования исходных веществ .

а A + b B = c C + d D

(DН о 298) x = c (DН о f , 298) C + d (DН о f , 298) D - a (DН о f , 298) A - b (DН о f , 298) B

(DН о 298) x = å n (DН о f , 298) конеч.в-в - å n (DН о f , 298) нач.в-в

Стандартные теплоты образования табулированы.

Стандартная теплота сгорания (DH o c , 298) - тепловой эффект реакции взаимодействия 1 моля вещества с кислородом с образованием при этом продуктов полного окисления при стандартных условиях (Р = const, Т = 298 К). Тепловой эффект реакции можно рассчитать по теплотам сгорания исходных и конечных веществ:

(DН о 298) x = å n (DН o c , 298) нач.в-в - å n (DН o c , 298) конеч.в-в

Теплоты сгорания часто используются для нахождения теплот реакций органических соединений, которые почти никогда не протекают однозначно и до конца. Это объясняется двумя причинами: 1) горение в кислороде является реакцией, общей для всех органических веществ и идущей при соблюдении некоторых условий до конца, т.е. полностью и однозначно; 2) техника сожжения органических веществ при V = const достигла высокого совершенства и позволяет определить теплоту сгорания с точностью до ± 0,02% . Комбинируя теплоты сгорания, можно вычислить теплоту любой химической реакции между органическими веществами. Примеры:

1. Найдем теплоту реакции

С 6 Н 6 (ж) = 3С 2 Н 2 DН о I = ? (I)

Теплоты сгорания известны:

С 6 Н 6 + 7 О 2 = 6СО 2 + 3Н 2 О (ж) ; DН о II = - 780980 кал (II)

C 2 H 2 + 2 O 2 = 2CO 2 + H 2 O (ж) ; DH o III = - 310620 кал (III)

(I) = (II) - 3 (III) ; DH o I = DH o II - 3DH o III = 150880 кал

2. Найдем с помощью теплот сгорания теплоту образования органического вещества: (теплота образования кислорода равна нулю)

С 2 Н 2 + 2 О 2 = 2СО 2 + Н 2 О; DН o c , 298 известна

DН o c , 298 = 2 + -

2 + - DН o c , 298

Недостаток расчета теплот реакций по теплотам сгорания (большой, но неизбежный) - уменьшение относительной точности получаемых результатов по сравнению с точностью исходных данных: во-первых, идет сложение ошибок, допущенных при измерении теплот сгорания органических реагентов; во-вторых, теплота реакции между реагентами почти всегда много меньше теплот сгорания реагентов. Во многих случаях относительная ошибка получаемой величины равна нескольким процентам (до нескольких десятков процентов).

ЗАВИСИМОСТЬ ТЕПЛОТЫ ПРОЦЕССА ОТ ТЕМПЕРАТУРЫ .

(Уравнения Кирхгоффа)

Рассмотренные выше теплоты химических реакций являются теплотами изотермических процессов и зависят от Т.

Q V = DU = U 2 - U 1 ; Q P = DH = H 2 - H 1

Продифференцируем эти равенства по Т при V (P) = const:

C V ,2 - C V ,1 = DC V

C V ,2 - мольная теплоемкость при V = const всей массы продуктов реакции

C V ,1 - всей массы исходных веществ

C P,2 - C P,1 = DC Р

C V ,2 - C V ,1 = n к C V ,к - n н С V ,н = n i C V , i

C P ,2 - C P ,1 = n к C P ,к - n н С P ,н = n i C P , i

Уравнения Кирхгоффа дают зависимость теплоты химической реакции от Т . Дифференциальная форма записи уравнений:

N i C V , i ; = = n i C P , i

Под стандартной теплотой образования понимают тепловой эффект реакции образования одного моля вещества из простых веществ, его составляющих, находящихся в устойчивыхстандартных состояниях.

Например, стандартная энтальпия образования 1 моль метана из углерода и водорода равна тепловому эффекту реакции:

С(тв) + 2H 2 (г) = CH 4 (г) + 76 кДж/моль.

Стандартная энтальпия образования обозначается ΔH f O . Здесь индекс f означает formation (образование), а перечеркнутый кружок, напоминающий диск Плимсоля - то, что величина относится к стандартному состоянию вещества. В литературе часто встречается другое обозначение стандартной энтальпии - ΔH 298,15 0 , где 0 указывает на равенство давления одной атмосфере (или, несколько более точно, на стандартные условия ), а 298,15 - температура. Иногда индекс 0 используют для величин, относящихся к чистому веществу , оговаривая, что обозначать им стандартные термодинамические величины можно только тогда, когда в качестве стандартного состояния выбрано именно чистое вещество . Стандартным также может быть принято, например, состояние вещества в предельно разбавленном растворе. «Диск Плимсоля» в таком случае означает собственно стандартное состояние вещества, независимо от его выбора.

Энергетика химических процессов – часть химической термодинамики (часть общей термодинамики).

Энергетическое состояние химической реакции как системы описывается с использованием следующих характеристик: U-внутренняя энергия, H-энтальпия, S-энтропия, G-энергия Гиббса.

Теплота, которую получает система, идет на приращение внутренней энергии и совершение работы: Q=D U+A. Если система не совершает никакой работы, кроме работы расширения, то Q=D U+pD V. Величина D H=D U+pD V при p=const называется энтальпией реакции. Т.к. внутреннюю энергию тела измерить невозможно (можно измерить только изменение D U), то точно так же невозможно измерить энтальпию тела – в расчетах используется изменение энтальпии D H.

Стандартной энтальпией образования называется изобарный тепловой эффект реакции получения одного моля сложного вещества из простых веществ, взятых в их наиболее устойчивой форме при стандартных условиях (T=298К, p=1 атм., С=1 моль/л). Энтальпия образования простых веществ в их устойчивом состоянии при стандартных условиях принимается равной 0.

Законы термохимии:

1. Лавуазье-Лапласа: тепловой эффект образования химических соединений равен, но обратен по знаку тепловому эффекту его разложения.

2. Гесса: тепловой эффект реакции при постоянном давлении или объеме зависит только от начального и конечного состояния системы и не зависит от пути перехода.


Энтропия – количественная мера беспорядка системы. Имеет статистический смысл и является характеристикой систем, состоящих из достаточно большого, но ограниченного числа частиц. Энтропия выражается через термодинамическую вероятность системы – числа микросостояний, соответствующих данному микросостоянию. Принято, что при абсолютном нуле энтропия идеального кристалла равна 0. Так же принято, что для гидротированного протона H+ абсолютное значение энтропии в водном растворе равно 0. Энтропия зависит от: от числа частиц в системе, от природы вещества, от агрегатного состояния. Для химических реакций изменение энтропии рассчитывается по абсолютным значениям энтропии компонентов. Для реакций, протекающих в водном растворе, расчет производится по краткой ионной формуле. Для газообразных веществ знак D S определяется по изменению объема. Если объем не изменяется, то знак определить нельзя. В изолированных системах возможны процессы, которые идут с увеличением энтропии. Это означает, что знак D S можно принять за критерий возможного самопроизвольного протекании реакции (только в изолированных системах!). В общем случае в открытых системах данный критерий применять нельзя.

Суммарное влияние энергетических и энтропийных факторов при постоянном давлении и температуре отражает изменение изотермического потенциала, который называется изменением свободной энергии Гиббса: D G=D H-TD S. Свободной энергией Гиббса называется энергия, складываемая из энергий химических связей. Знак D G есть критерий термодинамической вероятности самопроизвольного протекания процесса в данных условиях (p,T=const). При данных условиях могут самопроизвольно протекать только те процессы D G для которых меньше 0. Из уравнения видно, что можно определить направление процесса при любой температуре, но данный расчет приблизителен, т.к. не учитывается температурная зависимость энтальпии и энтропии. При низких температурах протекают главным образом экзотермические реакции. При высоких температурах главную роль играет энтропийный член уравнения, что видно на примере того, что реакции разложения сложных веществ на простые в основном протекают при высокой температуре.

Стандартной энергией Гиббса вещества называется энергия получения данного вещества при стандартных условиях. Стандартных условий на практике не существует, поэтому все расчеты с применением стандартных значений – приблизительные.

Поделиться: