Квантовое число n описывает. Квантовые числа электронов

Квантовые числа электронов

Главное квантовое число n определяет общую энергию электрона на данной орбитали. Оно может принимать любые целые значения, начиная с единицы (n = 1,2,3, …). Под главным квантовым числом, равным ∞, подразумевают, что электрону сообщена энергия, достаточная для его полного отделения от ядра (ионизация атома).

Кроме того, оказывается, что в пределах определенных уровней энергии электроны могут отличаться своими энергетическими подуровнями. Существование различий в энергетическом состоянии электронов, принадлежащих к различным подуровням данного энергетического уровня, отражается побочным (иногда его называют орбитальным) квантовым числом l . Это квантовое число может принимать целочисленные значения от 0 до n — 1 (l = 0,1, …, n — 1). Обычно численные значения l принято обозначать следующими буквенными символами:

Значение l 0 1 2 3 4
Буквенное обозначение s p d f g

В этом случае говорят о s -, р-, d -, f -, g -состояниях электронов, или о s -, р-, d -, f -, g -орбиталях.

Орбиталь - совокупность положений электрона в атоме, т.е. область пространства, в которой наиболее вероятно нахождение электрона.

Побочное (орбитальное) квантовое число l характеризует различное энергетическое состояние электронов на данном уровне, определяет форму электронного облака, а также орбитальный момент р - момент импульса электрона при его вращении вокруг ядра (отсюда и второе название этого квантового числа - орбитальное)

Таким образом, электрон, обладая свойствами частицы и волны, с наибольшей вероятностью движется вокруг ядра, образуя электронное облако, форма которого в s -, р-, d -, f -, g -состояниях различна.

Подчеркнем, что форма электронного облака зависит от значения побочного квантового числа l . Так, если l = 0 (s -орбиталь), то электронное облако имеет шаровидную форму (сферическую симметрию) и не обладает направленностью в пространстве

При l = 1 (р-орбиталь) электронное облако имеет форму гантели, т.е. форму тела вращения, полученного из «восьмерки» . Формы электронных облаков d -, f — и g -электронов на­много сложнее.

Движение электрона по замкнутой орбите вызывает появление магнитного поля. Состояние электрона, обусловленное орбитальным магнитным моментом электрона (в результате его движения по орбите), характеризуется третьим квантовым числом - магнитным m 1 . Это квантовое число характеризует ориентацию орбитали в пространстве, выражая проекцию орбитального момента импульса на направление магнитного поля.

Соответственно ориентации орбитали относительно направления вектора напряженности внешнего магнитного поля, магнитное квантовое число m 1 может принимать значения любых целых чисел, как положительных, так и отрицательных, от –l до +l , включая 0, т.е. всего (2l + 1) значений.

Таким образом, m 1 характеризует величину проекции вектора орбитального момента количества движения на выделенное направление. Например, р-орбиталь («гантель») в магнитном поле может ориентироваться в пространстве в трех различных положениях, так как в случае l = 1 магнитное квантовое число может иметь три значения: -1, 0, +1. Поэтому электронные облака вытянуты по осям х, y и z , причем ось каждого из них перпендикулярна двум другим.

Для объяснения всех свойств атома в 1925 г. была выдвинута гипотеза о наличии у электрона так называемого спина (сначала - для наглядности - считалось, что это явление аналогично вращению Земли вокруг своей оси при движении ее по орбите вокруг Солнца). На самом деле, спин - это чисто квантовое свойство электрона, не имеющее классических аналогов. Строго говоря, спин - это собственный момент импульса электрона, не связанный с движением в пространстве. Для всех электронов абсолютное значение спина всегда равно s = 1/2. Проекция спина на ось = (магнитное спиновое число m s ) может иметь лишь два значения: m s = 1/2 или m s = -1/2 .

Поскольку спин электрона s является величиной постоянной, его обычно не включают в набор квантовых чисел, характеризующих движение электрона в атоме, и говорят о четырех квантовых числах.

Главное квантовое число п п п
  • (Физика. Оптика. Квантовая физика. Строение и физические свойства вещества)
  • Квантовые числа и тонкая структура спектров
    Главное квантовое число п обозначает номер энергетического уровня электрона в атоме. Значение главного квантового числа п = 1 соответствует основному состоянию электрона с наименьшей энергией. Главное квантовое число п описывает только круговые (боровские) орбиты. Если при...
    (Физические основы теории оптической и рентгеновской спектроскопии)
  • Опыт Барнетта. Опыт Эйнштейна и де Хааза. Опыт Штерна и Герлаха. Спин. Квантовые числа орбитального и спинового моментов
    Известно, что намагничивание вещества в магнитном поле обусловлено преимущественной ориентацией или индуцированием во внешнем магнитном поле микроскопических молекулярных токов, возникающих из-за движения электронов по замкнутым микроскопическим орбитам в пределах каждой молекулы (атома). Для качественного...
    (Физика. Оптика. Квантовая физика. Строение и физические свойства вещества)
  • Квантово-механическая модель атома водорода (результаты решения уравнения Шрёдингера). Квантовые числа атома водорода
    Квантовая механика без привлечения постулатов Бора позволяет получать решение задачи об энергетических уровнях как для атома водорода и водородоподобной системы, так и для более сложных атомов. Будем рассматривать водородоподобный атом, содержащий единственный внешний электрон. Электрическое поле, создаваемое...
    (Физика. Оптика. Квантовая физика. Строение и физические свойства вещества)
  • Общая характеристика квантовых чисел

      Главное квантовое число

      n характеризует энергию электрона в атоме и размер электронной орбитали. Оно соответствует также номеру электронного слоя, на котором находится электрон. Совокупность электронов в атоме с одинаковым значением главного квантового числа n называют электронным слоем (энергетическим уровнем). n – принимает значения 1, 2, 3, …, ¥ . Энергетические уровни обозначают прописными латинскими буквами:

      Различия в энергиях электронов, принадлежащих к различным подуровням данного энергетического уровня, отражает побочное (орбитальное) квантовое число l . Электроны в атоме с одинаковыми значениями n и l составляют энергетический подуровень (электронную оболочку) . Максимальное число электронов в оболочке N l :

      N l = 2(2l + 1). (5.1)

      Побочное квантовое число принимает целые значения 0, 1, … (n – 1). Обычно l обозначается не цифрами, а буквами:

      Орбиталь

      – пространство вокруг ядра, в котором наиболее вероятно нахождение электрона.

      Побочное (орбитальное) квантовое число l характеризует различное энергетическое состояние электронов на данном уровне, форму орбитали, орбитальный момент импульса электрона.

      Таким образом, электрон, обладая свойствами частицы и волны, движется вокруг ядра, образуя электронное облако, форма которого зависит от значения l . Так, если l = 0, (s-орбиталь), то электронное облако имеет сферическую симметрию. При l = 1 (p-орбиталь) электронное облако имеет форму гантели. d-орбитали имеют различную форму: d z 2 - гантель, расположенная по оси Z с тором в плоскости X – Y, d x 2 - y 2 - две гантели, расположенные по осям X и Y; d xy , d xz , d yz ,- две гантели, расположенные под 45 o к соответствующим осям (рис. 5.1).

      Рис. 5.1. Формы электронных облаков для различных состояний электронов в атомах

      Магнитное квантовое число

      m l характеризует ориентацию орбитали в пространстве, а также определяет величину проекции орбитального момента импульса на ось Z. m l принимает значения от + l до - l , включая 0. Общее число значений m l равно числу орбиталей в данной электронной оболочке.

      Магнитное спиновое квантовое число m s характеризует проекцию собственного момента импульса электрона на ось Z и принимает значения +1/2 и –1/2 в единицах h/2p (h – постоянная Планка).

      Принцип (запрет) Паули

      В атоме не может быть двух электронов со всеми четырьмя одинаковыми квантовыми числами.

      Принцип Паули определяет максимальное число электронов N n , на электронном слое с номером n :

      N n = 2n 2 . (5.2)

      На первом электронном слое может находиться не более двух электронов, на втором – 8, на третьем – 18 и т. д.

      Правило Хунда

      Заполнение энергетических уровней происходит таким образом, чтобы суммарный спин был максимальным.

      Например, три р-электрона на орбиталях р-оболочки располагаются следующим образом:

      Таким образом, каждый электрон занимает одну р-орбиталь.

      Примеры решения задач

      . Охарактеризовать квантовыми числами электроны атома углерода в невозбужденном состоянии. Ответ представить в виде таблицы.

      Решение. Электронная формула атома углерода: 1s 2 2s 2 2p 2 . В первом слое атома углерода находятся два s-электрона с антипараллельными спинами, для которых n = 1. Для двух s-электронов второго слоя n = 2. Спины двух р-электронов второго слоя параллельны; для них m s = +1/2.

      № электрона

      Охарактеризовать квантовыми числами внешние электроны атома кислорода в основном состоянии. Ответ представить в виде таблицы.

      Решение. Электронная формула атома кислорода: 1s 2 2s 2 2p 4 . Во внешнем слое у этого атома находятся 6 электронов 2 s 2 2p 4 . Значения их квантовых чисел приведены в таблице.

      № электрона

      . Охарактеризовать квантовыми числами пять электронов, находящихся в состоянии 4d. Ответ представить в виде таблицы.

      Решение. Согласно правилу Хунда электроны в квантовых ячейках располагаются следующим образом:

      Значения главного, побочного и спинового квантовых чисел у электронов одинаковы и равны n =4, l =2, m s =+1/2. Рассматриваемые электроны отличаются значениями квантовых чисел m l .

      № электрона

      Рассчитать максимальное число электронов в электронном слое с n = 4.

      Решение. Максимальное число электронов, обладающих данным значением главного квантового числа, рассчитываем по формуле (5.2). Следовательно, в третьем энергетическом уровне может быть не более 32 электронов.

      Рассчитать максимальное число электронов в электронной оболочке с l = 3.

      Максимальное число электронов в оболочке определяется выражением (5.1). Таким образом, максимальное число электронов в электронной оболочке с l = 3 равно 14.

      Задачи для самостоятельного решения

      5.1. Охарактеризовать квантовыми числами электроны атома бора в основном состоянии. Ответ представить в виде таблицы:

      № электрона

      № электрона


      5.2 Охарактеризовать квантовыми числами d-электроны атома железа в основном состоянии. Ответ представить в виде таблиц:

      Расположение 3d-электронов атома железа на орбиталях:

      Значения квантовых чисел этих электронов:

      № электрона

      Шесть 3d-электронов атома железа располагаются на орбиталях следующим образом

      Квантовые числа этих электронов приведены в таблице

      № электрона


      5.3. Каковы возможные значения магнитного квантового числа m l , если орбитальное квантовое число l = 3?

      m l = +3; +2; +1; 0, - 1, - 2, - 3.


      5.4. Охарактеризовать квантовыми числами находящиеся во втором электронном слое электроны:

      Ответ представить в виде таблицы:

      № электрона

      Ответ. Электронная конфигурация 2s 2 2p 5 . Главное квантовое число для всех
      электронов равно 2. Для
      s-электронов l = 0, для р-электронов l = 1.

      № электрона

    Инструкция

    Главное квантовое число принимает целые значения: n = 1, 2, 3, … . Если n=∞, это подразумевает, что электрону сообщена энергия ионизации – энергия, достаточная для его отделения от ядра.

    В пределах одного уровня могут отличаться подуровнями. Такие в энергетическом состоянии одного уровня отражаются побочным квантовым числом l (орбитальным). Оно может принимать значения от 0 до (n-1). Значения l обычно символически представлены буквами. От значения побочного квантового числа зависит форма электронного .

    Движение электрона по замкнутой траектории провоцирует появление магнитного поля. Состояние электрона, обусловленное магнитным моментом, характеризуется магнитным квантовым числом m(l). Это третье квантовое число электрона. Оно характеризует его ориентацию в пространстве магнитного поля и принимает диапазон значений от (-l) до (+l).

    В 1925 году ученые предположили наличие у электрона . Под спином понимают собственный момент импульса электрона, не связанный с его движением в пространстве. Спиновое число m(s) может принимать только два значения: +1/2 и -1/2.

    Согласно принципу Паули, в не может быть двух электронов с одинаковым набором четырех квантовых чисел. Хотя бы одно из них должно различаться. Так, если находится на первой орбите, для него главное квантовое число n=1. Тогда однозначно l=0, m(l)=0, а для m(s) возможны два варианта: m(s)=+1/2, m(s)=-1/2. Именно поэтому на первом энергетическом уровне может находиться не более двух электронов, и имеют они разное спиновое число.

    На второй орбитали главное квантовое число n=2. Побочное квантовое число принимает два значения: l=0, l=1. Магнитное квантовое число m(l)=0 для l=0 и принимает значения (+1), 0 и (-1) для l=1. Для каждого из вариантов существует еще по два спиновых числа. Итак, максимально возможное число электронов, находящихся на втором энергетическом уровне, равно 8.

    К примеру, у благородного газа неона полностью заполнены электронами два энергетических уровня. Общее число электронов неона равняется 10 (2 с первого уровня и 8 со второго). Этот газ инертный, не вступает в с другими веществами. Другие вещества, вступая в реакции, стремятся приобрести структуру благородных .

    Полезный совет

    Чтобы полностью объяснить строение электронных оболочек атомов для всех случаев, кроме принципа Паули, нужно знать еще принцип наименьшей энергии и правило Гунда.

    Источники:

    • «Начала химии», Н.Е. Кузьменко, В.В. Еремин, В.А. Попков, 2008.

    Главное квантовое число - это целое число , которое является определением состояния электрона на энергетическом уровне. Энергетический уровень – это набор стационарных состояний электрона в атоме с близкими значениями энергии. Главное квантовое число определяет удаленность электрона от ядра, и характеризует энергию электронов, которые этот уровень занимают.

    Совокупность чисел, которые характеризуют состояние , называются квантовыми числами. Волновую функцию электрона в атоме, его уникальное состояние определяют четыре квантовых числа – главное, магнитное, орбитальное и сплин – момент движения элементарной , выраженный в количественном значении. Главное квантовое число имеет n .Если главное квантовое число увеличивается, то соответственно увеличивается и орбита, и энергия электрона. Чем меньше значение n, тем больше значение энергетического взаимодействия электрона . Если суммарная энергия электронов является минимальной, то состояние атома называется невозбужденным или основным. Состояние атома с высоким значением энергии называется возбужденным. На уровне самое большое число электронов можно определить формулой N = 2n2.Когда случается переход электрона с одного энергетического уровня на другой, изменяется и главное квантовое число .В квантовой теории утверждение, что энергия электрона квантуется, то есть может принимать лишь дискретные, определенные значения. Чтобы знать состояние электрона в атоме необходимо учитывать энергию электрона, форму электронного и других параметров. Из области натуральных чисел, где n может быть равно 1 и 2, и 3 и так далее, главное квантовое число может принимать какое угодно значение. В квантовой теории энергетические уровни обозначают буквами, значение n - числами. Номер периода, где находится элемент, равен числу энергетических уровней в атоме, находящемся в основном состоянии. Все энергетические уровни состоят из подуровней. Подуровень состоит из атомных орбиталей, которые определяются, характеризуются главным квантовым число м n, орбитальным число м l и квантовым число м ml. Число подуровней каждого уровня не превышает значение n.Волновое уравнение Шредингера является самым удобным электронного строения атома.

    Квантовое численное значение какой-либо квантованной переменной микроскопического объекта, характеризующее состояние частицы, называется квантовым числом. Атом химического элемента состоит из ядра и электронной оболочки. Состояние электрона характеризуется его квантовыми числами .

    Вам понадобится

    • таблица Менделеева

    Инструкция

    Квантовое орбитальное число 2 может принимать значения от 0 до n-2, характеризуя форму орбиталей. Также оно характеризует подоболочку, на которой электрон и . Квантовое число 2 имеет и буквенное . Квантовым 2 = 0, 1, 2, 3, 4 соответствуют обозначения 2 = s, p, d, f, g... Буквенные обозначения в записи, обозначающей электронную конфигурацию химического элемента, также присутствуют. По ним определяется квантовое число. Так, на подоболочке может быть до 2*(2l+1) электронов.

    Магнитным называется квантовое число ml, при этом, l дописано снизу, как индекс. Его данные показывают атомную орбиталь, принимая значения от 1 до -1. Всего (21+1) значение.

    Электрон будет являться фермионом, имея полуцелый спин, который равен ½. Его квантовое число будет принимать два значение, именно: ½ и –½. А также составлять две электрона на ось и считаться квантовым числом ms.

    Видео по теме

    Атом состоит из ядра и окружающих его электронов , которые вращаются вокруг него по атомным орбиталям и образуют электронные слои (энергетические уровни). Количество отрицательно заряженных частиц на внешних и внутренних уровнях определяет свойства элементов. Число электронов , содержащихся в атоме , можно найти, зная некоторые ключевые моменты.

    Вам понадобится

    • - бумага;
    • - ручка;
    • - периодическая система Менделеева.

    Инструкция

    Чтобы определить количество электронов , воспользуйтесь периодической системой Д.И. Менделеева. В этой таблице элементы расположены в определенной последовательности, которая тесно связана с их атомным строением. Зная, что положительный всегда равен порядковому номеру элемента, вы легко найдете количество отрицательных частиц. Ведь известно - атом в целом нейтрален, а значит, число электронов будет равно числу и номеру элемента в таблице. Например, равен 13. Следовательно, количество электронов у него будет 13, у натрия – 11, у (Sc), находящегося в 4 периоде, в 3 группе, побочной подгруппе, их 2. В то время как у Три постулата

    Вся квантовая механика состоит из принципа относительности измерений, принципа неопределенности Гейзенберга и принципа дополнительности Н.Бора. Все дальнейшее в квантовой механике основывается на этих трех постулатах. Законы квантовой механики – это основа изучения строения вещества. С помощью этих законов ученые выяснили строение атомов, объяснили периодическую систему элементов, изучили свойства элементарных частиц, поняли строение атомных ядер. С помощью квантовой механики ученые объяснили температурную зависимость, вычислили величину твердых тел и теплоемкости газов, определили строение и поняли некоторые свойства твердых тел.

    Принцип относительности измерений

    Данный принцип основывается на результатах измерения физической величины в зависимости от процесса измерения. Другими словами, наблюдаемая физическая величина - это собственное значение соответствующей физической величины. Считается, что не всегда точность измерения повышается с совершенствованием измерительных приборов. Этот факт описал и объяснил В. Гейзенберг в своем знаменитом принципе неопределенности.

    Принцип неопределенности

    Согласно принципу неопределенности, по мере того, как увеличивается точности измерения скорости передвижения элементарной частицы, увеличивается и неопределенность нахождения ее в пространстве, и наоборот. Это открытие В. Гейзенберга было выдвинуто Н. Бором как безусловное методологическое положение.

    Итак, измерение - важнейший исследовательский процесс. Чтобы провести измерение, требуется специальное теоретико-методологическое объяснение. А его отсутствие вызывает неопределенность.В измерении заложена характеристикаточности и объективности. Современные ученые считают, что именно измерение, проделанное с нужной точностью, служит основным фактором теоретического знания и исключает неопределенность.

    Принцип дополнительности

    Средства наблюдения относительны к квантовым объектам. Принцип дополнительности заключается в том, что данные, полученные в условиях опыта, невозможно описать единой картиной. Эти данные являются дополнительными в том смысле, что совокупность явлений дает полное представление о свойствах объекта. Бор примерял принцип дополнительности не только к физическим наукам. Он считал, что возможности живых существ – многогранны, и зависят друг от друга, что изучая их, приходится обращаться к взаимодополнению данных наблюдений вновь и вновь.

    Квантовые числа – это энергетические параметры, определяющие состояние электрона и тип атомной орбитали, на которой он находится. Квантовые числа необходимы для описания состояния каждого электрона в атоме. Всего 4-ре квантовых числа. Это: главное квантовое число – n , l , магнитное квантовое число – m l и спиновое квантовое число – m s .

    Главное квантовое число – n .

    Главное квантовое число – n – определяет энергетический уровень электрона, удалённость энергетического уровня от ядра и размер электронного облака. Главное квантовое число принимает любые целочисленные значения, начиная с n =1 ( n =1,2,3,…) и соответствует номеру периода.

    Орбитальное квантовое число – l .

    Орбитальное квантовое число – l – определяет геометрическую форму атомной орбитали. Орбитальное квантовое число принимает любые целочисленные значения, начиная с l =0 ( l =0,1,2,3,… n -1). Независимо от номера энергетического уровня, каждому значению орбитального квантового числа соответствует орбиталь особой формы. “Набор” таких орбиталей с одинаковыми значениями главного квантового числа называется энергетическим уровнем. Каждому значению орбитального квантового числа соответствует орбиталь особой формы. Значению орбитального квантового числа l =0 соответствует s -орбиталь (1-ин тип). Значению орбитального квантового числа l =1 соответствуют p -орбитали (3-ри типа). Значению орбитального квантового числа l =2 соответствуют d -орбитали (5-ть типов). Значению орбитального квантового числа l =3 соответствуют f -орбитали (7-мь типов).




    f-орбитали имеют ещё более сложную форму. Каждый тип орбитали – это объём пространства, в котором вероятность нахождения электрона – максимальна.

    Магнитное квантовое число – m l .

    Магнитное квантовое число – m l – определяет ориентацию орбитали в пространстве относительно внешнего магнитного или электрического поля. Магнитное квантовое число принимает любые целочисленные значения от –l до +l, включая 0. Это означает, что для каждой формы орбитали существует 2l+1 энергетически равноценных ориентаций в пространстве – орбиталей.

    Для s-орбитали:

    l=0, m=0 – одна равноценная ориентация в пространстве (одна орбиталь).

    Для p-орбитали:

    l=1, m=-1,0,+1 – три равноценные ориентации в пространстве (три орбитали).

    Для d-орбитали:

    l=2, m=-2,-1,0,1,2 – пять равноценных ориентаций в пространстве (пять орбиталей).

    Для f-орбитали:

    l=3, m=-3,-2,-1,0,1,2,3 – семь равноценных ориентаций в пространстве (семь орбиталей).

    Спиновое квантовое число – m s .

    Спиновое квантовое число – m s – определяет магнитный момент, возникающий при вращении электрона вокруг своей оси. Спиновое квантовое число может принимать лишь два возможных значения +1/2 и –1/2. Они соответствуют двум возможным и противоположным друг другу направлениям собственного магнитного момента электрона – спинам. Для обозначения электронов с различными спинами используются символы: 5 и 6 .

    Поделиться: