Что такое отрыв проскок пламени. Что такое проскок пламени

Пользовательского поиска

Что представляют собой «проскок» пламени в горелку и отрыв его от горелки и как их предупреждают?

Газовоздушная смесь, выходящая в действующую топку из горелки, быстро подогревается до температуры воспламенения и загорается. Зона или слой истекающей смеси, в котором начинается горение, имеет форму вытянутой дуги или конуса и называется фронтом воспламенения или горения.

Передача тепла, требуемого для воспламенения смеси, идет из топки нормально к фронту воспламенения. Сама же смесь выходит с некоторой скоростью из горелки в топку навстречу фронту распространения пламени. Скорость распространения пламени зависит от состава газовой смеси, содержания в ней воздуха, температуры, характера вытекания смеси из горелки.

При увеличении содержания первичного воздуха в смеси скорость распространения пламени возрастает и при содержании воздуха около 90% становится наибольшей. Сильно возрастает она также с ростом температуры и при вихреобразном (турбулентном) выходе смеси.

Скорость самой газовоздушной смеси зависит от количества смеси и размеров горелки. Для данных размеров она тем больше, чем больше газа подается в горелку и чем больше содержание подаваемого в нее или инжектируемого воздуха в газовоздушной смеси.

Скорость смеси должна превышать скорость нормального распространения фронта пламени. В этом случае между нормальной составляющей скорости смеси и нормальной скоростью распространения пламени установится равновесие.

Нарушение равновесия может вызвать затягивание горения в горелку - «проскок» в нее пламени или отрыв пламени от горелки и погасание. Проскок пламени в горелку, заполненную газовоздушной смесью (инжекционная горелка), может вызвать хлопки, а при неблагоприятных условиях горение в ней и перегрев горелки либо даже взрыв и разрушение.

Не бывает проскоков пламени в диффузионных горелках, так как внутри них находится только газ без примеси воздуха.

Наиболее опасны в отношении проскока пламени периоды розжига и отключения горелки, а также значительных изменений ее нагрузки. Во избежание проскока пламени в горелку розжиг горелок производят при закрытой подаче воздуха; при увеличении нагрузки работающей горелки сначала прибавляют подачу газа и после этого увеличивают тягу и подачу воздуха; при снижении нагрузки, наоборот, сначала уменьшают подачу воздуха и лишь после этого убавляют тягу и подачу газа.

Отрыв пламени от горелок также опасен из-за возможного загазования топки и газоходов котла при погасании факела.

Отрыв пламени от горелки наиболее вероятен при неправильном розжиге горелок, а во время работы - при внезапном увеличении давления газа или резком увеличении подачи воздуха. Во избежание отрыва пламени не следует перегружать газовые горелки, т. е. повышать более указанного в производственной инструкции давление подаваемых газа и воздуха.

Во время работы горелок необходимо поддерживать нормальное положение факела в объеме топки и относительно горелки и цвет факела в соответствии с указаниями инструкции.


Первичным называется воздух, поступающий в горелку, для смешения в ней с газом до момента горения.

Вторичным называется воздух, поступающий из объема топки в зону горения.

Расстояние на которое сдвигается фронт пламени в единицу времени в заданном направлении относительно неподвижной горючей смеси – есть скорость распространения пламени.

Для каждого газа скорость распространения пламени своя. Для метана она равна 0,67 м/сек. Это число лабораторное, испытание проводилось в трубке Æ 25 мм при концентрации газа в смеси с воздухом 10%. При увеличении диаметра трубки, скорость газа увеличивается.

Скорость распространения пламени зависит от следующих факторов:

1. От характера движения смеси (ламинарное или турбулентное).

2. От состава газа, т.е. от примесей, находящихся в газе.

3. От температуры газовоздушной смеси.

4. От соотношения газ-воздух.

5. От давления газовоздушной смеси.

6. От диаметра сопла-отверстия, через которое выходит газ.

Для каждого газа существует критическая величина отверстий, через которое пламя данного газа не протекает. Для метана размер отверстия Æ 2,5 мм является критической величиной или щель, шириной не более 1,2 мм.

На основании этих данных критических величин изготавливают стабилизаторы различной конструкции для горелок, для предотвращения проскока пламени внутрь горелки.

Отрыв пламени от горелки и проскок.

Отрыв пламени от горелки произойдет в том случае, если скорость истечения ГВС (газовоздушной смеси) будет больше скорости распространения пламени. При этом пламя укорачивается, удаляется от устья горелки, может оторваться полностью и может загазоваться топка.

Отрыв пламени от горелки может произойти от чрезмерной тяге в дымоходе, при подаче газа с большей скоростью, при большом давлении ГВС, поступающей в горелку.

Отрыв может произойти при розжиге горелки, при выключении части горелок. Нельзя подавать давление газа и воздуха в горелку больше, чем указано в паспорте горелки.

Проскок пламени в горелку произойдет, если скорость истечения ГВС будет меньше скорости горения – распространения пламени. Проскок сопровождается хлопком. При этом языки пламени вылетают через все отверстия в горелке и оператор может получить ожог.

Проскок пламени наиболее вероятен в горелках, внутри которых имеется газо-воздушная смесь, т.е. газ и воздух. Это горелки инжекционные и с принудительной подачей воздуха (кинетические).

При проскоке пламени в горелку она перегревается, может выйти из строя, а топка может загазоваться. Проскок пламени возможен из-за плохой тяги, а также при подаче давления в горелку ГВС давлением меньше, чем указано в паспорте горелки. Проскок возможен при уменьшении производительности горелки, при выключении инжекционной горелки с открытым регулятором первичного воздуха, при перегретой горелке.

При отрыве или проскоке необходимо немедленно перекрыть подачу газа на горелку, а затем выяснить причину и разжечь снова согласно инструкции.

1.Проскок и отрыв пламени в горелках. Причины и последствия этого явления. Проскок пламени в горелку - горение топлива непосредственно в горелке.Последствия - образуются продукты неполного сгорания топлива, горелка раскаляется и может выйти из строя.Причины проскока пламени в горелку – понижение давление газа или воздуха, уменьшение производительности горелки ниже значений, указанных в паспорте.Отрыв пламени от горелки – это перемещение пламени в направлении движения газовоздушной смеси, сопровождается погасанием пламени. Последствия - приводит к наполнению топки газовоздушной смесью, а затем к хлопку или взрыву.Причины отрыва пламени от горелки – резкое повышение давления газа или воздуха, нарушение соотношения расходов газ - воздух, резкое увеличение разрежения на выходе из топки, увеличение производительности горелки выше значений, указанных в паспорте.

2.Взрывной предохранительный клапан, его назначение. Предохраняет обмуровку, и каркас от разрушений при взрыве газо-воздушной смеси в топке, газоходах и борове, т. е. там, где возможно образование газовоздушных мешков Конструкция может быть различной.Представляет собой круглые или квадратные рамки, перекрытые листом асбеста, толщиной 2-2,5 мм асбеста и армированные медной сеткой, с откидной дверцей на петлях. При взрыве сначала разрывается асбест, а затем открывается дверца над асбестом., давление снижается, уменьшается опасность разрушения, после выхода газа. Необходимо ежедневное наблюдение оператором за клапаном (герметичность, отсутствие подсоса воздуха). При выполнении взрывного предохранительного клапана из асбеста необходимо следить за его целостностью, так как вследствие пульсаций в топке возможен его разрыв и повышенный присос холодного воздуха. При выполнении взрывного предохранительного клапана в виде откидывающихся дверей необходимо проверять плотность прилегания клапана к раме.Требования к взрывным предохранительным клапанам:Число, расположение, размеры для паровых и водогрейных котлов определяет проектная организация..Следует их предусматривать в верхней части топки и дымоходов, газоходах и где возможно скопление газов.Должны предусматриваться защитные устройства, на случай срабатывания взрыв. клапан.

3.Режимная карта котла, её назначение. Для обеспечения безопасного и экономичного сжигания топлива с минимальным коэффициентом избытка воздуха и устойчивого теплового режима котла, на каждый котёл составляется режимная карта пусконаладочной организацией, после испытания котла на разных режимах горения для получения разной производительности. Режимная карта является основным оперативным документом, в соответствии с которым регулируется работа котла при изменениях его нагрузки. Режимная карта, как правило, составляется на несколько режимов. Каждый режим имеет строгую зависимость между параметрами (давлением топлива, воздуха, разрежения в топке и др).При работе на котле, надо строго придерживаться режимов горения, указанных в режимной карте.Режимные карты должны быть вывешены у агрегатов и доведены до персонала. Пуско-наладочная организация выдаёт режимные карты, и они утверждаются главным инженером предприятия. Раз в три года, при работе на газе, должна составляться новая режимная карта. При работе на мазуте – 1 раз в 5 лет. Режимная карта должна уточняться после ремонта оборудования.


4.Ручной розжиг инжекционных горелок. Растопка котла производятся только по распоряжению начальника котельной или лица, его заменяющего, записанного в вахтенном журнале. Растопка котла должна производиться в течение времени, установленного администрацией предприятия (производственной инструкцией по безопасному обслуживанию котельных агрегатов), при слабом огне, уменьшенной тяге. Непосредственно перед розжигом включают вначале дымосос, а затем вентилятор и вентилируют топку, газоходы и воздуховоды согласно производственной инструкции,если время в инструкции не указано,то не менее 10- 15 мин.Окончание вентиляции топки и дымохода, определяют взятием пробы на наличие газа с помощью газоиндикатора, с верхней части топочного пространства. Отрегулировать тягу растапливаемого котла. По приборам КиП проверяют давление газа, разрежение в топке, они должны соответствовать режимной карте. После проверки закрытия кранов перед горелками открывают регуляторы первичного воздуха, проверяют давление газа перед кранами горелок, открывают газовый кран перед переносным запальником, который зажженным вводит в топку, подводя пламя к выходному отверстию горелки. Затем открывают кран перед горелкой (примерно наполовину) до появления ясно слышимого шума от истечения газа, который и должен загореться.В процессе регулирования инжекционной горелки надо следить, чтобы пламя не проскакивало в горелку, особенно при снижении ее нагрузки. В этом случае горелку выключают и после остывания ее снова включают в работу. При появлении сильных пульсаций в топке уменьшают подачу газа. Если розжиг не удачен, то снова вентилируем топку, проверяем герметичность котловой задвижки и выполняем розжиг горелки. Если розжиг удачный то: делается запись в журнале о времени растопки котла.

5.Предъявляемые требования к противогазу. Каждый участвующий в газоопасных работах должен иметь подготовленный к работе шланговый или кислородно-изолирующий противогаз. Применение фильтрующих противогазов не допускается. Разрешение на включение кислородно-изолирующих противогазов дает руководитель работ.При работе в кислородно-изолирующем противогазе необходимо следить за остаточным давлением кислорода в баллоне противогаза, обеспечивающем возвращение работающего в незагазованную зону. Продолжительность работы в противогазе без перерыва не должна превышать 30 мин. Время работы в кислородно-изолирующем противогазе следует записывать в его паспорт. Воздухозаборные патрубки шланговых противогазов должны располагаться с наветренной стороны и закрепляться. При отсутствии принудительной подачи воздуха вентилятором длина шланга не должна превышать 15 м. Шланг не должен иметь перегибов и защемлений. Противогазы проверяют на герметичность перед выполнением работ зажатием конца гофрированной дыхательной трубки. В подобранном правильно противогазе невозможно дышать.

Производить после загорания газа 4) при отключении сначала снизить производительность горелок до минимальной (согласно 


    При зажигании горелки с полной подачей воздуха может наблюдаться проскок пламени в горелку. Горелка начинает работать с характерным гудением, дает светящееся пламя и сильно разогревается, что может привести к ожогам и возгоранию трубок, подводящих газ. В таком случае необходимо закрыть газовый кран и, после остывания горелки, вновь ее зажечь, предварительно прикрыв подачу воздуха. 

Чтобы избежать проскока пламени в горелки, следует  

Не допускать сильного нагрева выходной головки горелки, если она должна охлаждаться водой или воздухом. При проскоке пламени в горелку необходимо закрыть подачу газа в горелку, и если она успела нагреться, то не пускать ее вновь до полного охлаждения. 

Л. 19]. Незаштрихованными оставлены области, где горение невозможно вследствие проскоков пламени в горелку (область 4) или вследствие того, что пламя полностью отрывается и гаснет (область 5). 

В конструкциях всех устройств для сжигания топлива с полным перемешиванием газа и воздуха до входа в горелочный туннель есть общие черты. Для предотвращения обратного удара (проскока) пламени в горелку горящая смесь должна входить в печное пространство со скоростью, большей скорости распространения пламени. Чем больше скорость струи горючей смеси, 7ем больше расстояние точки воспламенения от устья горелки, если не предусмотрены средства для торможения всего или части потока . Горение начинается в той точке струи, где ее скорость равна скорости распространения пламени, при условии, что температура смеси газа и воздуха равна или выше температуры воспламенения. Если эта точка расположена в устье горелки (предельный случай), пламя может проскочить в горелку. 

Срыв пламени и проскок пламени в горелку. 

Выше указывалось, что устойчивый процесс горения газа в факеле возможен лишь в ограниченном интервале скоростей истечения горючей смеси из горелки. Ирп малых скоростях истечения возможен проскок пламени в горелку, а прп больших скоростях - отрыв его от горелки. 

Чтобы зажечь горелку, надо к ней поднести зажженную спичку, а затем медленно открывать кран. При проскоке пламени в горелку ее немедленно погасить. 

Опыты показывают, что чем больше турбулентность газового потока, тем больше скорость расиространения этого пламени превышает скорость распространения пламени при прямоструйном движении, поэтому во избежание проскока пламени в горелку скорость вылета смеси из нее должна быть значительно больше скорости распространения пламени газовоздушной смеси. 

При проскоке пламени в горелку необходимо прекратить подачу газа к ней, охладить, если она успела нагреться, и повторно зажигать после вентиляции топки. 

Применена кассетная установка ламп с полым катодом , что создает большие удобства при последовательном определении различных элементов . Прибор снабжен автоматическим блоком подготовки газовой смеси, осуществляющим стабилизацию давления и расхода газов , их воспламенение и отключение при проскоке пламени в горелку, а также в случае снижения давления или падения напряжения в сети. Воздух поступает от компрессора или линии сжатого воздуха , а газы - от баллонов с редукторами. 

Как и у других инжекционных горелок среднего давления , проскок пламени в горелки Ленгипроинжпроекта (при ада 1,0) определяется диаметром устья (номером горелки) и скоростью вылета из него газовоздушной смеси (скорость пропорциональна расходу газа Кр)- Давление газа кгс/м, при котором наступает проскок пламени в горелки Ленгипроинжпроекта при а да 1,0 и компоновке с туннелем, составляет  

Если азот необходимо подавать в работающую систему (для устранения проскока пламени в горелке реактора подсоса воздуха в систему, работающую в вакууме, и др.), то его направляют по стационарным трубопроводам, соблюдая соответствующие правила , предусмотренные нормами. 

скорость истечения больших закрытых надежности скорость больше скорости распространения пламени. Этой минимальной скорости истечения газовоздушной смеси в топку соответствует величина наименьшего давления перед горелкой. Величину давления газа можно определить по формуле 

При небольших нагрузках горелки, когда скорость истечения газовоздушной смеси мала, происходит проскок пламени в горелку, сопровождаемый хлопком, т. е. взрывом небольшого объема смеси в самой горелке. В больших закрытых горелках приходится устанавливать взрывные клапаны. Для надежности скорость истечения газовоздушной смеси из кратера горелки при ее наименьшей нагрузке во избежание проскока пламени берут в 2-3 раза больше скорости распространения пламени. 

При просмотре суточной ведомости каких-либо отклонений в производительности котла , давлении газа , температурах и разрежениях по газовому тракту котлоагрегата не наблюдалось. Появление преждевременного проскока пламени в горелку может произойти в случае, если по каким-либо причинам снизится скорость выхода газовоздушной смеси из выходного насадка горелки . Это могло произойти вследствие увеличения плош,ади выходного сечения насадка из-за разрушения туннеля и обгорания насадка. Для устранения описанного дефекта необходимо при первой возможности остановить котлоагрегат и восстановить выходной насадок горелки и туннель. 

Проскок пламени в горелку недопустим, так как при этом газ будет гореть внутри горелки, последняя будет излишне накаливаться , в результате чего произойдет ее порча. В случае проскока пламени следует закрыть подачу газа , дождаться охлаждения горелки, а затем произвести повторное зажигание установленным порядком. 

Линии Па, 116 и Пв также представляют собой границы устойчивости горения, но определяемые возникновением проскока пламени внутрь горелки. Значения скоростей истечения, меньшие, чем на этих кривых, соответствуют режимам, при которых наблюдается проскок пламени в горелках соответствующего размера. 

Горелки Стальпроекта, начиная с теплопроизводительности 114 ООО ккалЫ (с диаметром сопла йо = 4,6 мм) и выше, делаются с полыми стенками для охлаждения их проточной водой (см. рис. 2. 36). Охлаждение головки не только предохраняет ее от воздействия высоких температур , но главным образом снижает скорость распространения пламени и препятствует проскоку пламени в горелку. Чтобы препятствовать отрыву пламени и способствовать его стабилизации, устраивается огнеупорный туннель, в котором протекает основной процесс горения. Если же туннель почему-либо устроить нельзя, то против выходного отверстия горелки устанавливается горка из шамота и реже рассекатель из огнеупорного материала. 

В случае необходимости подачи азота в работающуч) систему без ее остановки (для устранения проскока пламени в горелке реактора , защиты змеевиков подогревателей, устранения подсоса воздуха в систему, работающую при разрежении, и др.) подключение азота к аппаратам и трубопроводам производится при помощи трубы , присоединенной постоянно. При этом должны со блюдаться соответствующие правила.  

а) Проскок пламени (обратный удар) – это проникновение пламени внутрь горелки. Такое явление происходит в том случае, когда скорость истечения газовоздушной смеси из горелки меньше скорости распространения пламени. Чаще всего проскок происходит при неправильном зажигании и выключении горелки, а также при быстром снижении ее производительности. Проскок пламени может быть только у горелок с предварительным смешением газа и воздуха.

б) Метод борьбы: охлаждение туннеля горелки.

Причины проскока и отрыва пламени.

Причины проскока пламени в горелку – понижение давление газа или воздуха, уменьшение производительности горелки ниже значений, указанных в паспорте

Причины отрыва пламени от горелки – резкое повышение давления газа или воздуха, нарушение соотношения расходов газ - воздух, резкое увеличение разрежения на выходе из топки, увеличение производительности горелки выше значений, указанных в паспорте.

Типы стабилизаторов пламени.

а) Стабилизаторы газового пламени. Наиболее распространенными стабилизаторами пламени являются туннели конической и цилиндрической формы, применяемые при установке горелок различных типов. В туннелях стабилизацию пламени обеспечивают высокая температура и большая излучающая способность поверхности туннеля. Кроме того, в туннелях создаются зоны обратных токов (рециркуляции) или завихрений части продуктов горения, имеющих высокую температуру и способствующих воспламенению вытекающей из горелки газовоздушной смеси.

б) Газовые котлы отопления

Экологические проблемы при горении газов и других видов топлива.

В газовых выбросах присутствуют оксиды азота и серы. При растворении в атмосферном воздухе образуются кислотные осадки, что приводит к подкислению снежного и почвенного покрова, выпадению нитратов и сульфатов.

Что касается вредных влияний на почву, совокупная площадь нарушенных почв от воздействия выбросов горящих факелов составляет около 100 тыс. га. Вблизи факелов при воздействии высоких температур происходит практически полное выжигание.

Для лесных экосистем наиболее характерны такие негативные последствия, как сокращение лесов, повышение риска пожаров лесов вблизи факелов, снижение численности животных, насекомых и микроорганизмов.

Образование сажи и оксида углерода при горении.

Оксид углерода содержится в продуктах сгорания из перечисленных веществ в наибольшем количестве. Схема образования и выгорания СО имеет следующий характер: на начальном участке выгорания идёт накопление СО, а затем его окисление по длине факела или камеры сгорания. Высокие концентрации СО сохраняются, если происходит «замораживание» продуктов сгорания, т.е. быстрое охлаждение в результате расширения или соприкосновения с относительно холодными поверхностями теплообмена.

(В атмосфере оксид углерода окисляется до диоксида.)

Сажа обнаруживается в продуктах сгорания углеводородных газов при низком качестве смесеобразования и при значительном недостатке кислорода в зоне горения, а также вследствие резкого локального охлаждения пламени. Причина образования сажи заключается в том, что под воздействием высокой температуры углеводородные молекулы полностью разрушаются. Более лёгкие атомы водорода диффундируют в богатый кислородный слой и окисляются. А атомы углерода образуют аморфные частицы сажи.

Образование оксидов азота при сжигании газов.

Оксиды азота образуются в промышленных печах при высоких температурах 1800-2000 °С. Обычно концентрация оксида NO при выходе из дымовой трубы превышает в 1000-20000 раз ПДК. После выхода из дымовой трубы оксид азота переходит в диоксид NO 2 по двум реакциям:

1 В корне дымового факела протекает окисление кислородом

2NO + O 2 = 2NO 2

2 При низких концентрациях окисление идет за счет атмосферного воздуха

NO + O 3 = NO 2 + O 2 .

39. Тепловой механизм Я.Б. Зельдовича образования NO при горении

Высокотемпературный механизм окисления азота в зоне горения был предложен Я. Б. Зельдовичем в середине 1940-х годов и считается основным механизмом образования оксидов азота при горении. Этот механизм включает следующие элементарные стадии:

к которым добавляется реакция (Фенимор и Джонс, 1957):

Совокупность реакций (1-3) называется расширенным механизмом Зельдовича. В силу того что энергия тройной связи в молекуле N 2 составляет около 950 кДж/моль, реакция (1) имеет большую энергию активации и может проходить с заметной скоростью только при высоких температурах. Поэтому этот механизм играет важную роль в случае высоких температур в зоне реакции, например, при горении околостехиометрических смесей или при диффузионном горении. Считается, что повышение максимальной температуры в зоне горения свыше 1850 К приводит к недопустимо высоким выбросам NO x , и одним из основных способов снижения выбросов по тепловому механизму является недопущение образования очагов высокой температуры во фронте пламени.

Образование канцерогенных ПАУ при горении.

Полициклические ароматические углеводороды – нежелательный побочный продукт сжигания ископаемого топлива, в первую очередь угля и нефтепродуктов. Уголь считается смесью огромного количества поликонденсированных ароматических бензольных ядер с минимальным содержанием водорода. При сжигании этих веществ в печах, электростанциях, двигателях внутреннего сгорания эти соединения разлагаются. При низких температурах сгорания и недостаточном поступлении атмосферного кислорода образуется очень реактивный ацетилен, равно как и различные алифатические фрагменты углеводородов. Ацетилен полимеризуется в бутадиен, который в дальнейшем образует ядро ароматического углеводорода. При добавлении его к существующим ароматическим ядрам возникает ПАУ, например пирен, из которого путем добавления еще одной молекулы бутадиена выделяется наиболее известный канцероген – бензо[а]пирен (БаП). При сжигании при высокой температуре и обильном поступлении атмосферного кислорода образуется мало ПАУ, потому что практически весь углерод сгорает, превращаясь в оксид углерода.

При неполном сгорании возникают частички углерода – сажа. Можно предположить, что образующиеся ПАУ, адсорбированные на поверхности частичек сажи и дыма, вместе с ними попадают в окружающую нас среду. Сажа, твердые частички дыма и выхлопных газов содержатся в дорожной пыли, смоге больших городов, пыльном воздухе коксовых заводов. Вместе с пылью они попадают на одежду, кожу, в дыхательные пути. Сегодня известно уже несколько сот различных полициклических ароматических веществ: несколько десятков из них – канцерогены. Однако их действие неодинаково и зависит от строения соответствующего вещества.

Поделиться: