Способ внутритрубной диагностики. Безопасная эксплуатация магистральных газопроводов на основе внутритрубной диагностики

Внутритрубное обследование проводится в четыре уровня :

1. Обследование трубопровода с помощью снарядов – профилемеров. Они определяют дефекты геометрии стенки труб (гофры, овальность, вмятины).

2. С помощью ультразвуковых снарядов – дефектоскопов ведут поиск, измеряют коррозионные дефекты, расслоение металла труб

3. С помощью магнитных снарядов – дефектоскопов выявляют дефекты кольцевых сварных швов.

4. С помощью более современных ультразвуковых дефектоскопов СД ведут обнаружение и измеряют трещиноподобные дефекты в продольных швах и в теле трубы.

Классиф-ция деф-ов труб, опр-ых с помощью ВТД .

4 класса дефектов:

1. дефекты геометрии(гофры, вмятины, овальности).Приводят к снижению несущ-ей спос-ти трубы,к сниж-ю произв-ти.

2. Деф-ты стенки трубы (расслоение Ме трубы,включения,трещины, царапины,корроз-е поврежд-ия, потери Ме местного происх-ия). Приводят к сниж-ию несущ. спос-ти трубы.

3. Деф-ты попер-х сварных швов (непровары,поры и смещ-ие кромок шва).

4.Деф-ты прод-го заводс-го шва (те же).

ВТД . Перед провед-ем ВТД нужно произв-ти очистку внутр-ей полости трубы от отложений.В кач-ве мат-ов очистных дисков для очистных снар-ов прим-ся полиуретан.

ВТД пров-ся в 4 этапа: 1.Выявл-ся деф-ты геометрии трубы с пом-ю снарядов профилемеров.

2.выявл-ся деф-ты стенки трубы с пом-ю ультразвук-х снарядов «Ультраскан».

3.Деф-ты попер-ых сварных швов с пом-ю магн-ых снарядов «Магнискан»

«-« намагн-ся труба

4. Выявл-ся деф-ты прод-ых свар-х швов,деф-ты,ориент-ые в прод-ом напр-ии-ультразв-ми снарядами большого разрешения «Ультраскан».

По рез-ам диагн-го обслед-ия все деф-ты классиф-ют на 3 гр-пы:

Дефекты типа ПОР;-деф-ты ДПР (деф-ы, подл-ие рем-ту);-деф-ты,не треб-ие провед-ие рем-та.Они заносятся в банк данных для послед-го мониторинга.

По рез-ам диагн-ки пров-ся выборочный рем-т или сплошной (при скопленни деф-ов)

С помощью программ определяют степень опасности выявленных дефектов.

Диагностика линейной части газопровода .

При эксплуатации мг происходит загрязнение его внутренней поверхности частицами породы, окалиной, отслоившейся от труб, конденсатом, водой, метанолом и.т.д. Это приводит к увеличению коэффициента гидравлического сопротивления и соответственно к снижению пропускной способности газопровода. Внутреннюю поверхность газопровода от загрязнений очищают следующими способами: периодически очистными устройствами без прекращения перекачки газа; разовым использованием очистных устройств с прекращением подачи газа;; установкой конденсатосборников и дренажей в пониженных точках газопровода; повышением скоростей потоков газа в отдельных нитках системы газопроводов и последующим улавливанием жидкости в пылеуловителях КС. В качестве очистных устройств применяют очистные поршни, скребки, поршни-разделители. В зависимости от вида загрязнений применяют и определенные очистные устройства. Основное требование к ним: быть износостойкими, обладать хорошей проходимостью через запорные устройства, простыми по конструкции и дешевыми. Наиболее часто применяют очистные устройства типа ДЗК-РЭМ, ОПР-М, позволяющие одновременно очищать полость газопровода от твердых и жидких веществ. Для очистки газопроводов больших диаметров применяют поршни-разделители ДЗК-РЭМ-1200, ДЗК-РЭМ-1400, ОР-М-1200, ОПР-М-1400. Поршень монтируют с двумя, тремя, и более очистными элементами. Для движения поршня по газ-ду на нем создается определенный перепад давления, который зависит в основном от его конструкции. Создаваемый перепад р на поршне в среднем равен 0,03-0,05 Мпа. На всех проектируемых и вновь вводимых мг предусматривают устройства по очистке внутренней полости газопровода от загрязнения при помощи пропуска очистных поршней. В состав устройства входят узлы пуска и приема очистных поршней, система контроля и автоматического управления процессов очистки. Узлы пуска и приема очистных поршней изготавливают на рабочее р 7,5 Мпа и температуру рабочей Среды от -60 до 60 оС. Для контроля за прохождением очистных устройств по газопроводу в отдельных его точках стоят анализаторы прохождения поршня. Разработан комплекс Волна-1, предназначенный как для сигнализации прохождения очистных устройств по газопроводу, так и для отыскания их в случае застревания в нем.


11. Переходы трубопроводов через водные преграды и классификация их по способу строительства.

Переходы через водные преграды делятся по способу строительства на:

1. подводные;

2. воздушные: балочные на опорах, вантовые переходы, арочные.

В границу воздушного перехода трубопровода через водную преграду входят надземная часть и участки подземного трубопровода длиной по 50 м от места выхода трубы на поверхность.

К подводным трубопроводам относятся линейная часть, проходящая через водные преграды шириной более 10 м по зеркалу воды в межень (наименьший уровень воды) и глубиной более 1,5 м.

Границами подводного перехода являются:

1. для многониточных переходов – это участок, ограниченный запорной арматурой, расположенной на берегах.

2. для однониточных – это участок, ограниченный горизонтом высоких вод не ниже отметок 10% обеспеченности.

Трубопроводы основной и резервной ниток на участке подводного перехода и от подводного перехода до КППСОД должен проектироваться в соответствии с высшей категорией сложности.

ПП через водные преграды, шириной более 75 м по зеркалу воды в межень, в обязательном порядке оборудуются резервными нитками.

ПП по способу строительства делятся на:

1. Построенные траншейным способом. Традиционный способ строительства. Недостатки: необходимость ежегодного обследования, неэкологичность способа, необходимость капительного ремонта через 10-15 лет.

2. Построенные методом наклонно-направленного бурения. Достоинства: обеспечивает надежность эксплуатации подводного участка трубопровода (до 30 лет); экологичность способа.

3. Построенные методом микротоннелирования. Применяется значительно недавно. Преимущества: надежность и долговечность. Подводные переходы построенные методом микротонелирования разделяются на: переходы с тоннелем межтрубное пространство, которого заполнено инертным газом под избыточным давлением; переходы с тоннелем межтрубное пространство которое заполнено жидкостью с антикоррозийными свойствами покрытием с избыточным давлением.

4. Построенные методом «труба в трубе».

В состав сооружений перехода через водные преграды входят следующие объекты:

1. участок магистрального трубопровода в границах перехода;

2. узлы береговой запорной арматуры и КППСОД;

3. берего- и дноукрепительные сооружения, предназначенные для предотвращения размыва береговой м русловой части перехода;

4. информационные знаки ограждения охранной зоны перехода на судоходных и сплавных реках; указательные знаки оси трубопровода на береговых участках; знаки закрепления геодезической сети перехода;

5. пункт наблюдения (блокпост) обходчика;

6. вдольтрассовая ЛЭП;

7. система ЭХЗ в границах перехода;

8. трансформаторная подстанция для обеспечения электроэнергией запорной арматуры и средств ЭХЗ;

9. средства и оборудования телемеханики;

10. стационарные маркерные пункты для выполнения работ по внутритрубной диагностике;

11. датчики отбора давления, манометрические узлы, сигнализаторы прохождения очистных устройств, системы обнаружения уточек, системы контроля межтрубного пространства;

12. опорные сооружения воздушных переходов.

Требования к оборудованию ПП.

1. ПП должны быть оборудованы системами обнаружения утечек, а переходы, построенные методом «труба в трубе» должны быть оборудованы системами контроля давления в межтрубном пространстве. Информация о давлении должна подаваться на диспетчерский пункт ближайшей станции.

2. Резервные нитки оборудуются КППСОД.

3. ПП через судоходные и сплавные реки шириной более 500 м по зеркалу воды в межень должны иметь блокпост обходчика, оборудованный телефонной и радиосвязью.

4. ПП оборудуются постоянными геодезическими знаками (реперами), которые закладываются ниже глубины промерзания грунта, чтобы предотвратить морозный подъем репера.

5. Задвижки или краны, установленные на переходе, должны быть электрифицированы, телемеханизированы и находится в системе телеуправления. Электроснабжение задвижек и кранов должно осуществляться от двух независимых источников.

6. Задвижки имеют технологический номер, указатели положения затвора, ограждения, предупреждающие аншлаги. Береговые задвижки и краны должны обеспечивать герметичность отключенного участка перехода.

7. Для освобождения ПП от нефти в аварийных ситуациях путем замещения водой с пропуском разделителей, узлы береговых задвижек основной и резервной нитки перехода оборудуются с вантузами с Ду не менее 150 мм.

8. Задвижки и краны переходов должны иметь обвалование. Основные требования к обвалованию: высота обвалования 0,7 м; внутренние откосы обвалования должны быть укреплены протифильтрационным экраном; расстояние от основных задвижек или кранов до подошвы обвалования составляет 1,5 м.

9. Для проведения работ по внутритрубной диагностике в границах перехода должны устанавливаться маркерные пункты.

Требования к оборудованию воздушных переходов.

1. На трубопроводе и опорах ВП устанавливаются реперы для выполнения геодезического контроля положений элементов конструкции перехода.

2. Склоны оврагов и берега водного перехода в местах установки береговых опор должны быть оборудованы гасителями скорости потока (растительный покров, ступенчаты перепады, водопойные колодцы).

3. Русловые опоры балочных переходов должны иметь ледорезы в соответствие с проектом.

Ни один из современных способов внутритрубной диагностики трубопроводов с применением интеллектуальных поршней, использующих магнитные и ультразвуковые методы обследования, не позволяет выявить за один прогон снаряда 100% дефектов. Объясняется это, прежде всего тем, что каждый из применяемых методов имеет те или иные ограничения по выявлению дефектов определённого типа. В частности, серьёзным недостатком ультразвукового метода обследования является необходимость наличия контактной жидкости или геля, что делает его практически неприемлемым для диагностирования газопроводов.

Одним из методов, лишённых такого недостатка является метод электромагнитно-акустического преобразования (ЭМАП).

Принцип действия ЭМАП способа заключается в трансформации электромагнитных волн в упругие акустические. Как и в контактных ультразвуковых методах контроля, при дефектоскопии с применением ЭМАП используют преимущественно два способа генерации и регистрации ультразвуковой волны - импульсный и резонансный. Для реализации импульсного метода, наиболее часто применяемого для целей диагностики, в основном применяют те же электронные блоки, что и в традиционных ультразвуковых приборах, в которых возбуждение и приём ультразвука осуществляется с помощью пьезопреобразователей. Различие заключается в том, что вместо пьезоэлемента используется катушка индуктивности и имеется устройство для возбуждения поляризующего магнитного поля. В результате взаимодействия силы Лоренца и магнитострикции (магнитострикция - явление изменения формы и размеров тела при намагничивании; характерна для ферромагнитных веществ и измеряется относительной величиной удлинения ферромагнетика при намагничивании) с металлической поверхностью возникает акустическая волна, распространяющаяся в стенке трубы. В данном случае обследуемый материал сам является преобразователем.

Считается, что для уверенной работы ЭМА дефектоскопа необходимы магнитные поля с напряжённостью порядка 106 А/м. Современные дефектоскопы с использованием в конструкции разрезного магнитопровода с контролируемым прижимом постоянных магнитов к внутренней стенке трубы позволяют создать напряжённость магнитного поля в области действия ЭМА преобразователей (ЭМАП) до 30 кА/м.

Трещины и коррозионное растрескивание нарушают направленную ультразвуковую волну, что вызывает отражённый эхо-сигнал. На основе анализа отражённого эхо-сигнала делаются выводы о состоянии стенки трубы.

Таким образом одним из главных достоинств дефектоскопа с использованием ЭМАП является его уникальная способность по выявлению дефектов, обусловленных взаимодействием металла в напряжённым состоянии и коррозионной среды - стресс-коррозионного растрескивания, а также растрескивания вследствие водородного насыщения.

Следует отметить, что стресс-коррозионные поражения характерны для газопроводов высокого давления и являются крайне опасными дефектами, выявление и локализация которых представляет собой очень сложную задачу.

Побочным эффектом разработки внутритрубных инспекционных снарядов с использованием ЭМАП оказалась их способность выявлять состояние изоляционного покрытия. При этом по характеру зарегистрированных сигналов можно разделить состояние изоляционного покрытия трубопровода на категории:

  • отслоение без нарушения целостности;
  • нарушение целостности (отсутствие) изоляционного покрытия;

что очень важно при реализации программы переизоляции трубопроводов, находящихся в эксплуатации длительные сроки.

Технические возможности наиболее передовых компаний, занимающихся разработками внутритрубных инспекционных снарядов, позволяют оснастить дефектоскопы инерциальными измерительными системами на базе оптоволоконных гироскопов. Указанная система выполняет картографирование трубопровода, т.е. определяет его пространственное положение в координатах DGPS. В дальнейшем, при обработке данных обследования, для каждого выявленного дефекта определяются координаты DGPS, которые заносятся в общую электронную базу данных обследования, которая передаётся оператору трубопровода.

Оперируя базой данных обследования, оператор трубопровода может самостоятельно разработать программу ремонта. При этом, если ранее, когда исчерпывающая информация о состоянии изоляции трубопроводов была недоступна операторам трубопроводов, т.е. о её состоянии судили по косвенным признакам (результаты дефектоскопии на потерю металла, выборочные шурфовки, обследование состояния системы ЭХЗ и т.п.), то при появлении на внутритрубном диагностическом рынке технологии ЭМАП отпадает необходимость в глобальной переизоляции трубопроводов. Что позволяет операторам трубопроводов экономить колоссальные средства. А если учесть, что данный вид инспекционных снарядов даёт дополнительную информацию по трещиноподобным дефектам, экономический эффект от их применения оказывается ещё больше.

Инспекционный снаряд с использованием ЭМАП состоит из следующих системных компонентов:

  • батареи;
  • устройства записи и хранения информации;
  • блока определения трещин;
  • блока определения отслоения изоляции;
  • блока одометра;
  • блока контроля скорости (опция)

Полевые испытания снарядов ЭМАП подтверждают, что прибор с высокой точностью определяет плоские трещины и различные степени нарушения изоляции:




Изоляция, нанесённая в полевых условиях, и соответствующие данные обследования

К основным преимуществам снаряда ЭМАП можно отнести следующие:

  • сенсоры не требуют контактной жидкости, что позволяет использовать снаряд для обследования как жидкостных, так и газовых трубопроводов;
  • на сигналы ЭМАП не оказывает влияния среда, вследствие чего достигается высокая точность измерений;
  • особые возможности обнаружения стресс-коррозионного растрескивания; колоний трещин и различных видов отдельных трещин (сетка трещин, внешние продольные трещины на границе сварного шва, усталостные трещины), а также трещины в продольных швах или в зоне, примыкающей к ним;
  • это единственный внутритрубный инспекционный снаряд, определяющий наружное отслоение изоляции;
  • возможность комбинирования с другими инспекционными технологиями для создания высокоэффективного инспекционного снаряда; например, возможна комбинация с блоком картографирования и блоком контроля скорости (скорость снаряда до 5 м/с при скорости потока перекачиваемой среды до 12 м/с - не уменьшается пропускная способность трубопровода).

Отправить заявку на эту услугу

До проведения внутритрубной диагностики выбор участка для капитального ремонта проводился на основе статистики аварий, результатов электрометрических испытаний, данных визуального контроля при проведении шлифования.

Ограниченность информации при таком выборе участка под ремонт не обеспечивала достоверность и не позволяла своевременно выявить участки трубопровода, нуждающиеся в ремонте в первую очередь. При проведении гидроиспытания на предмет обнаружения дефектов также, как и при ремонте участков необходимо было останавливать трубопровод на длительный период, а сброс воды после гидроиспытаний значительно ухудшал экологическую обстановку. К началу 90-х годов в связи с увеличением сроков эксплуатации традиционно применяемые средства и методы по предотвращению аварий и прямых потерь нефти исчерпали свои возможности, возникла необходимость поиска новых подходов к решению задачи обеспечения безопасности эксплуатации магистральных трубопроводов, основанных на анализе их фактического технического состояния и обеспечивающих целенаправленное использование на выборочный ремонт с экономическим эффектом.

Применение подобного направления привело к созданию в 1991г. на базе АК “ Транснефть” дочернего предприятия по диагностике “Диаскан”.

1.1.Общие понятия и определения технической диагностики трубопроводов

Диагностирование – это направленное воздействие на объект или систему для сохранения, поддержания функционирования их количественных и качественных характеристик.

Качественные оценки предполагают проверку соответствия системы в целом общим принципом и ее отдельных подсистем, имеющимся частным рекомендациям.

Для количественных оценок определяют критерии эффективности как для всей системы, так и отдельных ее частей, сравнивают полученные критерии, а также различные варианты, рассчитанные с учетом полученных критериев с заданными значениями и находят рациональные показатели при едином экономическом критерии функционирования системы.

При диагностировании применяют параметрические и непараметрические методы контроля. Параметрические методы предусматривают первоначально контроль и оценку самих параметров во времени, определяется их изменение в процессе работы оборудования. По значениям комплекса контролируемых параметров принимают решение в системе диагностирования оборудования. При непараметрических методах контроля используют значения изменения выходных величин элемента или подсистемы (их статистические и динамические характеристики). Чаще всего применяют непрерывные функции или интегрально осредненные величины, куда явно или неявно входят значения параметров элемента или подсистемы.

При решении технической диагностики не только определяют техническое состояние объекта в данное время, но и прогнозируют его состояние на некоторое время вперед, что очень важно для определения структуры ремонтных циклов и интервалов между проверками оборудования, машин и механизмов. Для этого применяют интегральный подход, с помощью которого строятся математические модели, с помощью которых можно будет получить информацию об изменении параметров. Кроме того с помощью математических моделей, построенных с учетом эксплуатационных данных и соответствующих алгоритмов, находят рациональные способы воздействия на технологические процессы технического или экономического характера. При этом должно предусматриваться максимальное использование существующих организационных структур системы трубопроводного транспорта.

Нами очищены и обследованы внутритрубными дефектоскопами более 3800 километров трубопроводов диаметром от 159 мм до 1420 мм.

Цель услуги:

1. Обследование технического состояния трубопровода.

2. Расчеты на прочность (максимального разрешенного давления) и долговечность (остаточного ресурса) по результатам обследования.

3. Экспертиза промышленной безопасности. Лицензия № ДЭ-00-013475.

Этапы технологии внутритрубной диагностики:

1. Подготовительные работы - определение (по данным опросного листа) и обеспечение контролепригодности обследуемого трубопровода.

2. Очистка внутренней полости трубопровода от инородных предметов, окалины, остатков электродов, асфальтосмолистых, парафиновых и пирофорных отложений.

3. Калибровка трубопровода - определение минимального проходного сечения трубопровода и обеспечение 70% проходимости от наружного диаметра (т.е. устранение всех дефектов геометрии, превышающих 30% от наружного диаметра).

4. Обследование трубопровода профилемером - выявление дефктов геометрии трубопровода (вмятин, гофр, овальности) и изерение радиуса поворотов. Обеспечение проходимости трубопровода в 85% от от наружного диаметра (устранение всех дефектов геометрии, превышающих 15% от наружного диаметра) и минимального радиуса поворота трубопровода, равного 1,5Dн или 3Dн (Rпов. должно быть более или равно 1,5Dн или 3Dн в зависимости от применяемого после пофилеметрии дефектоскопа).

5. Обследование трубопровода внутритрубными магнитными (MFL и TFI) и/или ультразвуковыми дефектоскопами - выявление таких дефектов, как: коррозия (внутренняя, наружная, точечная и сплошная), стресс-коррозия под напряжением, расслоения, включения, разноориентированные трещины и др. дефекты стенки трубопровода.

6. Расчет на прочность и долговечность (остаточного ресурса) и экспертиза промышленной безопасности.

С 2007 г. нами выполнены работы по внутритрубной диагностике и экспертизе промышленной безопасности трубопроводов (в т.ч. подводных переходов) в ОАО АНК «Башнефть», ОАО «Удмуртнефть», ООО «Белкамстрой», ОАО «Белкамнефть», ЗАО «Нафтатранс», ОАО «Сургутнефтегаз», ООО «БПО-Отрадный», АО "Шешмаойл", "СНПС-Актобемунайгаз", ОАО "РН-Краснодарнефтегаз" и др.

Опыт работ по внутритрубной диагностике нефтегазопроводов более 10 лет.

Внутритрубная ультразвуковая диагностика газонефтепроводов

2. Внутритрубная диагностика газонефтепроводов

Внутритрубная дефектоскопия зарекомендовала себя как наиболее информативный метод и по существу является основным при диагностике линейной части газопроводов. Многолетний опыт работы по внутритрубной дефектоскопии на трубопроводах позволил сформулировать основные критерии выбора метода внутритрубной инспекции для различных трубопроводов.

Решение об обследовании промысловых трубопроводов приборами внутритрубной дефектоскопии принимает заказчик. Обследование следует проводить исходя из технико-экономической целесообразности и в соответствии с требованиями действующих нормативно-технических документов.

Внутритрубная инспекция проводится после завершения подготовки участка магистрального нефтепровода к диагностированию предприятием, эксплуатирующим участок нефтепровода и направления предприятию, выполняющему диагностические работы, документации, подтверждающей эту готовность. Ответственными за проведение диагностических работ на участке магистрального нефтепровода являются главные инженеры предприятий, эксплуатирующих участки нефтепроводов. Готовность к диагностированию обеспечивается проверкой исправности камеры пуска-приема и запорной арматуры, проведением очистки внутренней полости трубопровода, созданием необходимых запасов нефти для обеспечения объемов перекачки в соответствии с режимами. При использовании запасов нефти из резервуаров должна быть предотвращена возможность попадания в транспортируемую нефть осадка из резервуара.

Необходимая полнота контроля участка магистрального нефтепровода достигается на основе реализации 4-х уровневой интегрированной системы диагностирования, предусматривающая определение параметров следующих дефектов и особенностей трубопровода, выходящих за пределы допустимых значений, оговоренных в утвержденных методиках определения опасности дефектов:

дефектов геометрии и особенностей трубопровода (вмятин, гофр, овальностей поперечного сечения, выступающих внутрь трубы элементов арматуры трубопровода), ведущих к уменьшению его проходного сечения;

дефектов типа потери металла, уменьшающих толщину стенки трубопровода (коррозионных язв, царапин, вырывов металла и т.п.), а также расслоений, включений в стенке трубы;

поперечных трещин и трещиноподобных дефектов в кольцевых сварных швах;

продольных трещин в теле трубы, продольных трещин и трещиноподобных дефектов в продольных сварных швах.

Работы по внутритрубной диагностике в общем случае включают в себя:

Пропуск скребка-калибра, снабженного калибровочными дисками, укомплектованными тонкими мерными пластинами, для определения минимального проходного сечения трубопровода перед пропуском профилемера. Диаметр калибровочных дисков должен составлять 70% и 85% от наружного диаметра трубопровода. По состоянию пластин после прогона (наличию или отсутствия их изгиба) производится предварительное определение минимального проходного сечения участка нефтепровода. Минимальное проходное сечение линейной части нефтепровода, безопасное для пропуска стандартного профилемера, составляет 70% от наружного диаметра трубопровода;

Пропуск шаблона-профилемера для участков первичного обследования, имеющих подкладные кольца, с целью предупреждения застревания и повреждения профилемера деформированными подкладными кольцами;

Пропуск профилемера, определяющего дефекты геометрии: вмятины, гофры, а также наличие особенностей: сварных швов, подкладных колец и других выступающих внутрь элементов арматуры трубопровода. При первом пропуске профилемера маркерные передатчики устанавливаем с интервалом 5-7 км. При втором и последующих пропусках профилемера установка маркеров производится только в тех точках, где по результатам первого пропуска обнаружены сужения, уменьшающие проходное сечение трубопровода от согласованного максимального уровня наружного диаметра, представляемого в таблицах технического отчета по результатам прогона профилемера. По результатам профилеметрии предприятие, эксплуатирующее участки нефтепровода, устраняет сужения, уменьшающие проходное сечение на величину менее 85% от наружного диаметра трубопровода с целью предупреждения застревания и повреждения дефектоскопа;

Пропуск очистных скребков для очистки внутренней поверхности трубопровода от парафиносмолистых отложений, глиняных тампонов, а также удаления посторонних предметов;

Пропуск дефектоскопа. Установка маркеров при первом пропуске снарядов-дефектоскопов осуществляется с интервалом 1,5-2 км. При втором пропуске снарядов-дефектоскопов установка маркеров производится в тех точках, где имелись пропущенные маркерные пункты при первом пропуске и где по данным первого пропуска снаряда-дефектоскопа имеют место потери информации. Перед запуском инспекционного снаряда персонал предприятия, выполняющего диагностические работы, обязан провести проверку исправности внутритрубного снаряда с составлением акта установленной формы.

Внутритрубная ультразвуковая диагностика газонефтепроводов

Техническое диагностирование трубопровода - определение технического состояния трубопровода, поиск мест и определение причин отказов (неисправностей), а также прогнозирование его технического состояния...

Динамометрирование скважинной штанговой насосной установки

В ПО "DinamoGraph" используются следующие алгоритмы (разработка ООО НПП "ГРАНТ"): - расчета периода и начала динамограммы, позволяющие автоматизировать обработку данных...

Капитальный ремонт линейной части магистрального газопровода Уренгой-Помары-Ужгород с заменой трубы

На каждый газопровод на основании результатов анализа технической документации разрабатывается индивидуальная программа диагностирования, которая включает: Рисунок 1...

Методы диагностики тягового электродвигателя (ТЭД)

Методы оценки технического состояния газоперекачивающих агрегатов

При вполне удовлетворительном техническом состоянии агрегата и его опорных узлов необходимо иметь сведения об интенсивности и характере износа поверхностей трения...

Моделирование неисправностей шарикоподшипников качения на примере двухрядного сферического подшипника

Подшипник качения является самым распространенным и наиболее уязвимым элементом любого роторного механизма...

Основные этапы монтажа аппаратуры автоматического регулирования и управления

Приводы путевых машин

Испытание проводится в рабочем режиме для каждого контура. Присутствует напряжение на соленоидах распределителя Р и клапана КП. Шток Ц полностью выдвинут...

Приводы путевых машин

Испытание проводится в режиме холостого хода для каждого насоса. КП находится в режиме переливного. Напряжение на соленоидах распределителей и клапанов отсутствует. Вторичная защита отключена. ГТ установлен в напорной линии насоса перед КП...

Приводы путевых машин

Испытание ГЦ осуществляется в рабочем режиме. Производится переключение Р1 или Р2 во все рабочие позиции и втягивание/выдвижение штоков цилиндров на полный ход. Вторичная защита отключена...

Приводы путевых машин

Испытание гидромотора производится в рабочем режиме путем установки гидротестера в линии после распределителя. Распределитель переведен в рабочую позицию. КП первичной защиты работает в режиме предохранительного, вторичная защита отключена...

Проектирование цеха роликовых подшипников

Большое количество роликовых подшипников, находящихся в эксплуатации, выдвигает повышенные требования к надежности их работы в буксовых узлах колесных пар...

Развитие теоретических принципов технической диагностики

С начала 1970-х годов проблеме диагностики и изоляции отказов динамических процессов стали уделять все большее внимание. Было изучено и разработано большое количество методологий основанных на физической и аналитической избыточности...

Системы обнаружения утечек в нефте- и нефтепродуктопроводах

Метод основан на звуковом эффекте (в ультразвуковом диапазоне частот), возникающем при истечении жидкости через сквозное отверстие стенке трубопровода. Ультразвуковые волны создают звуковое поле внутри трубопровода...

Современные технологии ремонта оборудования производства на базе аутсорсинга

Диагностика осуществляется с помощью специальных систем мониторинга и диагностических устройств...

Поделиться: