Получение гидроксида алюминия. Основания

Алюминия гидроксид (англ. aluminium hidroxide ), алюминия гидроокись, Al(OH) 3 — в медицине антацидное средство.

Алюминия гидроксид — международное непатентованное наименование лекарственного средства
Алюминия гидроксид — международное непатентованное наименование (МНН) лекарственного средства. По АТХ алюминия гидроксид относится к разделу «А02А Антациды », группе «A02AB Препараты алюминия» и имеет код A02AB01.
Алюминия гидроскид — антацид
В настоящее время алюминия гидроксид как однокомпонентный препарат при лечении кислотозависимых заболеваний практически не применяется. Чаще всего он используется в комбинации с соединениями магния . Как и другие соединения алюминия, оказывает закрепляющее действие.

Алюминия гидроксид, как антацидное средство, является так называемым «невсасывающимся антацидом» (см. рис. справа; Ивашкин В.Т. и др.). Эффект невсасывающихся антацидов развивается медленнее, чем у всасывающихся, но продолжается дольше, до 2,5-3 часов. Но главным преимуществом невсасывающихся антацидов является отсутствие феномена «кислотного рикошета », который заключается в увеличении кислотопродукции после окончания действия препарата (Бордин Д.С.).

Алюминия гидроксид вызывает медленное снижение кислотности желудка , поэтому при ускоренном прохождении через желудок антацидное действие не успевает развивается в полной мере.

Алюминия гидроксид также называется гидроокисью алюминия, обладает антацидными свойствами (снижает кислотность желудочного сока), и поэтому применяется в медицинской практике для симптоматического лечения заболеваний желудка или двенадцатиперстной кишки. Данное вещество используется в медицине довольно длительный промежуток времени, но в настоящее время его вытесняют более современные препараты группы антацидов. Однако во многих случаях до сих пор гидроксид алюминия остается оптимальным препаратом по многим параметрам, вследствие чего необходимо хорошо знать его свойства и терапевтические эффекты.

Гидроксид алюминия – краткая характеристика вещества, его свойства и способы применения

Гидроксид алюминия представляет собой химическое соединение, которое входит в перечень медицинских средств группы антацидов. Все антациды снижают кислотность желудочного сока, благодаря чему устраняют изжогу, чувство тяжести, дискомфорта и боли в животе после еды, а также применяются для комплексного лечения язвенной болезни желудка и двенадцатиперстной кишки, гастро-эзофагеального рефлюкса и т. д. Гидроксид алюминия, являясь антацидом, также снижает кислотность желудочного сока и, соответственно, может применяться для терапии вышеуказанных состояний и заболеваний.

В странах бывшего СССР к гидроксиду алюминия часто относят вещество, которое называется алгелдрат (моногидрат оксида алюминия) , что не совсем правильно, поскольку химическая структура данных соединений различна. Так, гидроксид алюминия – это, по сути, щелочь, а алгелдрат – оксид, содержащий дополнительно молекулу воды. Поэтому, с позиции академической науки, да и с практической точки зрения объединять данные вещества в одно не следует, ведь они имеют различные химические и физические свойства. Более того, в анатомо-терапевто-химической классификации лекарственных веществ алгелдрат и алюминия гидроксид также разделены и имеют различные коды, вследствие чего объединять их не следует. Мы также не станем объединять алгелдрат и алюминия гидроксид в одно вещество, и рассмотрим свойства только первого соединения, чтобы не создавать путаницу.

В настоящее время в качестве самостоятельного антацидного средства гидроксид алюминия практически не применяется в медицинской практике, поскольку, во-первых, обладает рядом весьма неприятных побочных эффектов, а во-вторых, потому что появились современные, более эффективные средства с лучшей переносимостью. Как правило, алюминия гидроксид в медицинской практике применяется в сочетании с магния гидроксидом, поскольку последний улучшает переносимость соединения алюминия. В странах СНГ имеется всего несколько препаратов, содержащих алюминия гидроксид в качестве активного вещества – это Рокжель (Рокгель) и Алюминия гидроокись-Ривофарм. В США и Европе имеется более широкий спектр препаратов, содержащих алюминия гидроксид и применяющихся в медицинской практике по сей день.

Однако многие могут возразить, что алюминия гидроксид входит в состав многих современных антацидных препаратов в качестве одного из активных компонентов наравне с другими веществами, например, магния гидроксидом. Подобное мнение является не совсем правильным, поскольку в современных препаратах содержится не алюминия гидроксид, а алгелдрат, который просто часто считают тем же веществом, что и гидроксид алюминия. Но, как мы уже говорили, алгелдрат и алюминия гидроксид – это разные химические соединения, которые не следует объединять в одно целое.

Алюминия гидроксид, несмотря на недостатки, входит в перечень лекарственных веществ и пусть не часто, но используется в практической медицине. Поэтому мы рассмотрим его свойства и правила применения.

Итак, гидроксид алюминия представляет собой рыхлый порошок, практически не растворимый в воде, но способный формировать гелеобразную структуру. Именно благодаря способности формировать гелеобразную структуру порошок гидроксида алюминия для медицинского применения взбалтывают с водой, получая суспензию для приема внутрь. Вещество обладает антацидным, адсорбирующим и обволакивающим свойствами.

Гидроксид алюминия, как правило, применяется внутрь для лечения заболеваний пищеварительного тракта, связанных с повышенной кислотностью желудочного сока, таких, как язвенная болезнь желудка или двенадцатиперстной кишки, гастриты , эзофагиты , колит и т. д.

Несколько реже алюминия гидроксид применяют для устранения гиперфосфатемии (повышенный уровень фосфатов в крови) на фоне почечной недостаточности. Дело в том, что гидроксид алюминия связывает избыток фосфатов в кишечнике, которые при почечной недостаточности не выводятся из организма в нормальном объеме, тем самым как бы помогая почкам удалять данные соли.

Кроме того, в редких случаях гидроксид алюминия применяют наружно в качестве вяжущего средства при заболеваниях кожи.

Внутрь гидроксид алюминия, как правило, принимают в виде суспензии, которая представляет собой тщательно разболтанный в воде порошок. В редких случаях при невозможности приготовить суспензию гидроксид алюминия принимают внутрь непосредственно в виде порошка.

Наружно гидроксид алюминия используют только в порошке, присыпая им пораженные участки кожного покрова.

Лекарственные препараты, содержащие гидроксид алюминия

В странах СНГ имеется только два лекарственных препарата, содержащих гидроксид алюминия в качестве активного вещества – это Рокжель (Рокгель) и Алюминия гидроксид-Ривофарм. В странах Европы и США имеется гораздо более широкий спектр лекарственных препаратов с гидроксидом алюминия в качестве единственного активного вещества, таких, как например Alternagel, Amphojel, Aloh-Gel и т. д.

Препаратов, которые содержат в качестве одного из активных компонентов алгелдрат, на рынке стран СНГ существенно больше, поскольку они являются более эффективными, безопасными и современными. Для облегчения ориентирования приведем перечень антацидных препаратов, присутствующих на фармацевтическом рынке стран СНГ, содержащих алгелдрат в качестве активного вещества:

  • Аджифлюкс (алгелдрат + гидроксид магния) таблетки;
  • Алмагель, Алмагель А и Алмагель Нео (алгелдрат + гидроксид магния) – суспензия;
  • Алтацид (алгелдрат + гидроксид магния) – суспензия и таблетки жевательные;
  • Алюмаг (алгелдрат + гидроксид магния) таблетки;
  • Гастрацид (алгелдрат + гидроксид магния) таблетки;
  • Маалокс и Маалокс мини (алгелдрат + гидроксид магния) таблетки и суспензия;
  • Палмагель (алгелдрат + гидроксид магния) гель для приема внутрь;
  • Сималгел ВМ (алгелдрат + гидроксид магния + симетикон) суспензия для приема внутрь.

Терапевтическое действие

Гидроксид алюминия обладает тремя основными фармакологическими свойствами:
  • Антацидное действие;
  • Адсорбирующее действие;
  • Обволакивающее действие.
Антацидное свойство заключается в способности гидроксида алюминия снижать кислотность желудочного сока за счет вступления в химическую реакцию с соляной кислотой. Вещество снижает кислотность желудочного сока постепенно, и его эффект продолжается длительно (3 – 5 часов). Отдельно следует отметить положительное свойство гидроксида алюминия, заключающееся в отсутствии "кислотного рикошета". Это означает, что после того, как прекращается действие препарата, в желудке не происходит усиленного образования еще большего количества соляной кислоты с появлением тягостных симптомов. К сожалению, снижая кислотность желудочного сока, гидроксид алюминия сильно угнетает и выработку пищеварительных ферментов поджелудочной железой , поэтому на фоне его применения у человека могут появиться проблемы с перевариванием пищи.

В кишечнике алюминий не всасывается, а образует нерастворимые соли – фосфаты, которые провоцируют запоры. Поэтому при применении в качестве антацидного средства только алюминия гидроксида следует принимать слабительные препараты . Устранить запоры можно комплексным приемом гидроксида алюминия в сочетании с гидроксидом магния, что, как правило, успешно и делается.

Адсорбирующее свойство гидроксида алюминия заключается в его способности связывать молекулы соляной кислоты и, тем самым, нейтрализовывать их, усиливая антацидный эффект, основанный на химической реакции.

Обволакивающее свойство гидроксида алюминия заключается в его способности равномерно распределяться по слизистой оболочке желудка, образуя на ней тонкую защитную пленку, предохраняющую от повреждающего воздействия как соляной кислоты, так и некоторых видов пищи.

Таким образом, гидроксид алюминия применяется в качестве симптоматического средства для устранения различных неприятных ощущений, обусловленных повышенной кислотностью желудочного сока. Поскольку кислотность желудочного сока может быть повышенной не только при тяжелых серьезных заболеваниях, но и на фоне функциональных расстройств, то гидроксид алюминия нельзя считать препаратом только для лечения патологии, поскольку его можно применять и исключительно в качестве симптоматического средства для устранения неприятных ощущений.

Отдельно следует сказать еще об одном свойстве гидроксида алюминия, которое также используется в медицинской практике. Так, данное вещество, попадая из желудка в кишечник, связывает фосфаты , образуя с ними нерастворимые соли и выводя их из организма вместе с калом. Способность гидроксида алюминия выводить из организма фосфаты используется в комплексной терапии почечной недостаточности, при которой, напротив, данные соли накапливаются и вызывают различные расстройства. Ведь фосфаты в норме выводятся в основном почками, а при почечной недостаточности, соответственно, эти соли не удаляются из организма в необходимом объеме и накапливаются. Применение гидроксида алюминия позволяет удалить избыток фосфатов из организма и, тем самым, улучшить самочувствие человека, страдающего почечной недостаточностью.

Показания к применению

Гидроксид алюминия показан к применению в составе комплексной терапии следующих заболеваний, а также для устранения диспепсических симптомов:
  • Эзофагит;

— неорганическое вещество, щелочь алюминия, формула Al(OH) 3 . Встречается в природе, входит в состав бокситов.

Свойства

Существует в четырех кристаллических модификациях и в виде коллоидного раствора, гелеобразного вещества. Реактив почти не водорастворим. Не горит, не взрывается, не ядовит.

В твердом виде — мелкокристаллический рыхлый порошок, белый или прозрачный, иногда с легким серым или розовым оттенком. Гелеобразный гидроксид тоже белый.

Химические свойства у твердой и гелеобразной модификации отличаются. Твердое вещество достаточно инертно, не вступает в реакции с кислотами, щелочами, другими элементами, но может образовывать метаалюминаты в результате сплавления с твердыми щелочами или карбонатами.

Гелеобразное вещество проявляет амфотерные свойства, то есть реагирует и с кислотами, и со щелочами. В реакции с кислотами образуются соли алюминия соответствующей кислоты, со щелочами — соли другого типа, алюминаты. Не вступает в реакции с раствором аммиака.

При нагревании гидроксид разлагается на оксид и воду.

Меры предосторожности

Реактив относится к четвертому классу опасности, считается пожаробезопасным и практически безопасным для человека и окружающей среды. Осторожность нужно проявлять только с аэрозольными частицами в воздухе: пыль оказывает раздражающее воздействие на органы дыхания, кожу, слизистые оболочки.

Поэтому на рабочих местах, где возможно образование большого количества пыли гидроксида алюминия, сотрудники должны использовать средства защиты для органов дыхания, глаз и кожи. Следует наладить контроль содержания в воздухе рабочей зоны вредных веществ по методике, утвержденной ГОСТом.

Помещение должно быть оборудовано приточно-вытяжной вентиляцией, а при необходимости — местными аспирационными отсосами.

Хранят твердую гидроокись алюминия в многослойных бумажных мешках или другой таре для сыпучих продуктов.

Применение

— В промышленности реактив используется для получения чистого алюминия и производных алюминия, например, оксида алюминия, сернокислого и фтористого алюминия .
— Оксид алюминия, получаемый из гидроксида, применяется для получения искусственных рубинов для нужд лазерной техники, корундов — для сушки воздуха, очистки минеральных масел, для производства наждака.
— В медицине используется как обволакивающее средство и антацид длительного действия для нормализации кислотно-щелочного баланса ЖКТ человека, для лечения язвенной болезни желудка и двенадцатиперстной кишки, гастро-эзофагеального рефлюкса и некоторых других заболеваний.
— В фармакологии входит в состав вакцин для усиления иммунной реакции организма на воздействие введенной инфекции.
— В водоочистке — как адсорбент, помогающий удалять из воды различные загрязнения. Гидроксид активно вступает в реакции с веществами, которые нужно удалить, образуя нерастворимые соединения.
— В химпроме используется как экологичный антипирен для полимеров, силиконов, каучуков, лакокрасочных материалов — чтобы ухудшить их горючесть, способность к возгоранию, подавить выделение дыма и токсичных газов.
— В производстве зубной пасты, минеральных удобрений, бумаги, красителей, криолита.

Оксид алюминия – Al2O3. Физические свойства: оксид алюминия – белый аморфный порошок или очень твердые белые кристаллы. Молекулярная масса = 101,96, плотность – 3,97 г/см3, температура плавления – 2053 °C, температура кипения – 3000 °C.

Химические свойства: оксид алюминия проявляет амфотерные свойства – свойства кислотных оксидов и основных оксидов и реагирует и с кислотами, и с основаниями. Кристаллический Аl2О3 химически пассивен, аморфный – более активен. Взаимодействие с растворами кислот дает средние соли алюминия, а с растворами оснований – комплексные соли – гидроксоалюминаты металлов:

При сплавлении оксида алюминия с твердыми щелочами металлов образуются двойные соли – метаалюминаты (безводные алюминаты):

Оксид алюминия не взаимодействует с водой и не растворяется в ней.

Получение: оксид алюминия получают методом восстановления алюминием металлов из их оксидов: хрома, молибдена, вольфрама, ванадия и др. – металлотермия , открытый Бекетовым :

Применение: оксид алюминия применяется для производства алюминия, в виде порошка – для огнеупорных, химически стойких и аб-разивных материалов, в виде кристаллов – для изготовления лазеров и синтетических драгоценных камней (рубины, сапфиры и др.), окрашенных примесями оксидов других металлов – Сr2О3 (красный цвет), Тi2О3 и Fe2О3 (голубой цвет).

Гидроксид алюминия – А1(ОН)3 . Физические свойства: гидроксид алюминия – белый аморфный (гелеобразный) или кристаллический. Почти не растворим в воде; молекулярная масса – 78,00, плотность – 3,97 г/см3.

Химические свойства: типичный амфотерный гидроксид реагирует:

1) с кислотами, образуя средние соли: Al(ОН)3 + 3НNO3 = Al(NO3)3 + 3Н2О;

2) с растворами щелочей, образуя комплексные соли – гидроксоалюминаты: Al(ОН)3 + КОН + 2Н2О = К.

При сплавлении Al(ОН)3 с сухими щелочами образуются метаалюминаты: Al(ОН)3 + КОН = КAlO2 + 2Н2О.

Получение:

1) из солей алюминия под действием раствора щелочей: AlСl3 + 3NaOH = Al(ОН)3 + 3Н2О;

2) разложением нитрида алюминия водой: AlN + 3Н2О = Аl(ОН)3 + NН3?;

3) пропусканием СО2 через раствор гидроксокомплекса: [Аl(ОН)4]-+ СО2 = Аl(ОН)3 + НСО3-;

4) действием на соли Аl гидратом аммиака; при комнатной температуре образуется Аl(ОН)3.

62. Общая характеристика подгруппы хрома

Элементы подгруппы хрома занимают промежуточное положение в ряду переходных металлов. Имеют высокие температуры плавления и кипения, свободные места на электронных орбиталях. Элементы хром и молибден обладают нетипичной электронной структурой – на внешней s-орбитали имеют один электрон (как у Nb из подгруппы VB). У этих элементов на внешних d– и s-орбиталях находится 6 электронов, поэтому все орбитали заполнены наполовину, т. е. на каждой находится по одному электрону. Имея подобную электронную конфигурацию, элемент обладает особенной стабильностью и устойчивостью к окислению. Вольфрам имеет более сильную металлическая связь, нежели молибден . Степень окисления у элементов подгруппы хрома сильно варьирует. В надлежащих условиях все элементы проявляют положительную степень окисления от 2 до 6, максимальная степень окисления соответствует номеру группы. Не все степени окисления у элементов стабильны, у хрома самая стабильная – +3.

Все элементы образуют оксид MVIO3, известны также оксиды с низшими степенями окисления. Все элементы данной подгруппы амфотерны – образуют комплексные соединения и кислоты.

Хром, молибден и вольфрам востребованы в металлургии и электротехнике. Все рассматриваемые металлы покрываются пассивирующей оксидной пленкой при хранении на воздухе или в среде кислоты-окислителя. Удалив пленку химическим или механическим способом, можно повысить химическую активность металлов.

Хром. Элемент получают из хромитной руды Fe(CrO2)2, восстанавливая углем: Fe(CrO2)2 + 4C = (Fe + 2Cr) + 4CO?.

Чистый хром получают восстановлением Cr2O3 с помощью алюминия или электролиза раствора, содержащего ионы хрома. Выделяя хром с помощью электролиза, можно получить хромовое покрытие, используемое в качестве декоративных и защитных пленок.

Из хрома получают феррохром, применяемый при производстве стали.

Молибден. Получают из сульфидной руды. Его соединения используют при производстве стали. Сам металл получают при восстановлении его оксида. Прокаливая оксид молибдена с железом, можно получить ферромолибден. Используют для изготовления нитей и трубок для обмотки печей и электроконтактов. Сталь с добавлением молибдена используют в автомобильном производстве.

Вольфрам. Получают из оксида, добываемого из обогащенной руды. В качестве восстановителя используют алюминий или водород. Получившийся вольфрам в идее порошка впоследствии формуют при высоком давлении и термической обработке (порошковая металлургия). В таком виде вольфрам используют для изготовления нитей накаливания, добавляют к стали.

Алюминий — амфотерный металл. Электронная конфигурация атома алюминия 1s 2 2s 2 2p 6 3s 2 3p 1 . Таким образом, на внешнем электронном слое у него находятся три валентных электрона: 2 — на 3s- и 1 — на 3p-подуровне. В связи с таким строением для него характерны реакции, в результате которых атом алюминия теряет три электрона с внешнего уровня и приобретает степень окисления +3. Алюминий является высокоактивным металлом и проявляет очень сильные восстановительные свойства.

Взаимодействие алюминия с простыми веществами

с кислородом

При контакте абсолютно чистого алюминия с воздухом атомы алюминия, находящиеся в поверхностном слое, мгновенно взаимодействуют с кислородом воздуха и образуют тончайшую, толщиной в несколько десятков атомарных слоев, прочную оксидную пленку состава Al 2 O 3 , которая защищает алюминий от дальнейшего окисления. Невозможно и окисление крупных образцов алюминия даже при очень высоких температурах. Тем не менее, мелкодисперсный порошок алюминия довольно легко сгорает в пламени горелки:

4Аl + 3О 2 = 2Аl 2 О 3

с галогенами

Алюминий очень энергично реагирует со всеми галогенами. Так, реакция между перемешанными порошками алюминия и йода протекает уже при комнатной температуре после добавления капли воды в качестве катализатора. Уравнение взаимодействия йода с алюминием:

2Al + 3I 2 =2AlI 3

С бромом, представляющим собой тёмно-бурую жидкость, алюминий также реагирует без нагревания. Образец алюминия достаточно просто внести в жидкий бром: тут же начинается бурная реакция с выделением большого количества тепла и света:

2Al + 3Br 2 = 2AlBr 3

Реакция между алюминием и хлором протекает при внесении нагретой алюминиевой фольги или мелкодисперсного порошка алюминия в заполненную хлором колбу. Алюминий эффектно сгорает в хлоре в соответствии с уравнением:

2Al + 3Cl 2 = 2AlCl 3

с серой

При нагревании до 150-200 о С или после поджигания смеси порошкообразных алюминия и серы между ними начинается интенсивная экзотермическая реакция с выделением света:

сульфид алюминия

с азотом

При взаимодействии алюминия с азотом при температуре около 800 o C образуется нитрид алюминия:

с углеродом

При температуре около 2000 o C алюминий взаимодействует с углеродом и образует карбид (метанид) алюминия, содержащий углерод в степени окисления -4, как в метане.

Взаимодействие алюминия со сложными веществами

с водой

Как уже было сказано выше, стойкая и прочная оксидная пленка из Al 2 O 3 не дает алюминию окисляться на воздухе. Эта же защитная оксидная пленка делает алюминий инертным и по отношению к воде. При снятии защитной оксидной пленки с поверхности такими методами, как обработка водными растворами щелочи, хлорида аммония или солей ртути (амальгирование), алюминий начинает энергично реагировать с водой с образованием гидроксида алюминия и газообразного водорода:

с оксидами металлов

После поджигания смеси алюминия с оксидами менее активных металлов (правее алюминия в ряду активности) начинается крайне бурная сильно-экзотермическая реакция. Так, в случае взаимодействия алюминия с оксидом железа (III) развивается температура 2500-3000 о С. В результате этой реакции образуется высокочистое расплавленное железо:

2AI + Fe 2 O 3 = 2Fe + Аl 2 О 3

Данный метод получения металлов из их оксидов путем восстановления алюминием называется алюмотермией или алюминотермией .

с кислотами-неокислителями

Взаимодействие алюминия с кислотами-неокислителями, т.е. практически всеми кислотами, кроме концентрированной серной и азотной кислот, приводит к образованию соли алюминия соответствующей кислоты и газообразного водорода:

а) 2Аl + 3Н 2 SO 4(разб.) = Аl 2 (SO 4) 3 + 3H 2

2Аl 0 + 6Н + = 2Аl 3+ + 3H 2 0 ;

б) 2AI + 6HCl = 2AICl 3 + 3H 2

с кислотами-окислителями

-концентрированной серной кислотой

Взаимодействие алюминия с концентрированной серной кислотой в обычных условиях, а также низких температурах не происходит вследствие эффекта, называемого пассивацией. При нагревании реакция возможна и приводит к образованию сульфата алюминия, воды и сероводорода, который образуется в результате восстановления серы, входящей в состав серной кислоты:

Такое глубокое восстановление серы со степени окисления +6 (в H 2 SO 4) до степени окисления -2 (в H 2 S) происходит благодаря очень высокой восстановительной способности алюминия.

— концентрированной азотной кислотой

Концентрированная азотная кислота в обычных условиях также пассивирует алюминий, что делает возможным ее хранение в алюминиевых емкостях. Так же, как и в случае с концентрированной серной, взаимодействие алюминия с концентрированной азотной кислотой становится возможным при сильном нагревании, при этом преимущественно протекает реакция:

— разбавленной азотной кислотой

Взаимодействие алюминия с разбавленной по сравнению с концентрированной азотной кислотой приводит к продуктам более глубокого восстановления азота. Вместо NO в зависимости от степени разбавления могут образовываться N 2 O и NH 4 NO 3:

8Al + 30HNO 3(разб.) = 8Al(NO 3) 3 +3N 2 O + 15H 2 O

8Al + 30HNO 3(оч. разб) = 8Al(NO 3) 3 + 3NH 4 NO 3 + 9H 2 O

со щелочами

Алюминий реагирует как с водными растворами щелочей:

2Al + 2NaOH + 6H 2 O = 2Na + 3H 2

так и с чистыми щелочами при сплавлении:

В обоих случаях реакция начинается с растворения защитной пленки оксида алюминия:

Аl 2 О 3 + 2NaOH + 3H 2 O = 2Na

Аl 2 О 3 + 2NaOH = 2NaAlO 2 + Н 2 О

В случае водного раствора алюминий, очищенный от защитной оксидной пленки, начинает реагировать с водой по уравнению:

2Al + 6H 2 O = 2Al(OH) 3 + 3H 2

Образующийся гидроксид алюминия, будучи амфотерным, реагирует с водным раствором гидроксида натрия с образованием растворимого тетрагидроксоалюмината натрия:

Al(OH) 3 + NaOH = Na

Поделиться: