Что изучает биометрия. Биометрия как наука, метод и способ документирования

За последние 15 лет биометрия успела перекочевать из жанра научной фантастики в повседневность. Заграничные путешествия, сохранность вкладов, борьба с подделкой документов, терроризмом, нелегальной иммиграцией — поле применения биометрии постоянно ширится. Во многих странах мира давно применяются биометрические паспорта с многоуровневой защитой от подделок. Недавно на них перешла и Украина, а Кыргызстан начал сбор биометрических данных населения. Как любая новая технология, биометрия несет в себе не только удобство, но и немалые потенциальные риски, оставаясь темой горячих общественных и политических дискуссий.

Что такое биометрия

Биометрический параметр является «измеряемой физической характеристикой или личностной поведенческой чертой, используемой для опознания личности или для верификации предъявленной идентификационной информации зарегистрированного пользователя». Проще говоря, индивидуальные физические данные, как то: цифровое изображение лица, отпечаток пальца или радужная оболочка глаза могут быть использованы для подтверждения того, что вы действительно тот, за кого себя выдаете. На сегодняшний день общепризнанны три вида физиологических систем биометрической идентификации:

  • распознавание черт лица (обязательная)
  • распознавание отпечатка пальца (необязательная)
  • распознавание радужной оболочки глаза (необязательная)

Биометрия, как правило, ассоциируется с идентификационными документами. Стандартизацией идентификационных документов в мире занимается Международная организация гражданской авиации (ИКАО) при ООН, основанная в 1944 году. В настоящее время 191 страна мира входит в ИКАО. Вопрос внедрения биометрической идентификации обсуждался на международном уровне еще в 1990-ые годы. Основным же катализатором широкого внедрения этой технологии стала еррористическая атака на США 11 сентября 2001 года.

Схема 1. Карта распространенности биометрических паспортов.

Уже в 2002 году была Берлинская резолюция, признающая биометрию основным способом идентификации. В документе говорится, что страны-участницы ИКАО принимают технологию распознавания лица как основной и обязательный способ идентификации, а также по своему усмотрению могут применять технологию идентификации с помощью отпечатков пальцев и сканирования радужной оболочки глаза.

Система распознавания лица была выбрана основной и обязательной, т.к. уже существовали базы данных с фотографиями, в том числе базы цифровых изображений. Базы преступников, находящихся в розыске, также включают цифровые изображения. Иными словами, международную систему распознавания черт лица создать было проще, быстрее и дешевле.

Новоорлеанская резолюция и последующие программы 2003 года ввели стандарты паспортов с электронными чипами, на которых хранятся данные их владельцев. Данные распознают специальные считывающие машины – как, например, на паспортном контроле в аэропортах.

Биориски

Преимущества использования биометрических паспортов в основном заключаются в более надежной системе подтверждения личности. Сам биометрический паспорт снижает риск подделки, так как в электронном чипе внутри паспорта хранится целый блок информации о его владельце: цифровая информация о гражданине, фотография, имя, подпись, а зачастую и отпечатки пальцев. Тем не менее, обмануть систему можно, например, если документы, предъявленные для получения биопаспорта, изначально были поддельными.

Таким образом, при использовании биометрии возможность подмены данных паспорта или подделки самого документа сокращается, но появляются риски, связанные с технологиями сбора и хранения биометрики, погрешностями в считывании информации, выдачей биопаспортов и физической подменой самих биопараметров. На биопараметры можно повлиять, скажем, с помощью пластической хирургии, контактных линз, хирургического изменения отпечатков пальцев. Отпечатки пальцев человека также могут измениться вследствие профессиональной деятельности, генетических особенностей, болезни или возраста.

Несмотря на высокую степень надежности, биометрические данные все же не гарантируют полную достоверность идентификации личности. Существуют и риски, связанные с хранением этих данных и сбором дополнительных показателей. Биометрия, как персональные данные человека, должна храниться и собираться в соответствии с законодательной базой государств и международными договоренностями.

Трудности перехода

Новая технология, как нередко бывает, подняла массу новых вопросов. ИКАО столкнулась с рядом сложностей при внедрению биометрической идентификации. Это вопросы обеспечения неприкосновенности частной жизни, защиты персональных данных, управления рисками хранения биометрической информации в централизованных базах данных, а также рисками хранения биометрической информации в самих паспортах.

Персональные данные

Довольно часто биометрия не воспринимается как персональная информация, которая может подвергнуть риску частную жизнь или быть использована не по назначению. Однако сбор и методы хранения биометрии имеют непосредственное отношение к правам человека и его безопасности. Любая информация, которая может быть использована для идентификации человека, имеет отношение к персональным данным . Последний отчет Европейской комиссии на тему защиты биометрики также указывает на важность защиты персональной информации, в том числе изображения, как фундаментального права человека.

Паспорта и прочие идентификационные документы используются не только для пересечения границ. Документы, подтверждающие личность, также могут запрашивать в отелях, на сайтах бронирования билетов, в банках при открытии счетов или во время оказания госуслуг. Доступ к биометрике любого гражданина дает возможность отслеживать его финансовую и частную жизнь, так как биоданные связываются с другими персональными данными граждан. Доступ к отпечаткам пальцев может открыть всю персональную информацию, включая счета в банках, передвижения, адрес, место работы, имена детей и супругов.

Сбор персональных данных должен осуществляться при свободном и информированном согласии граждан. Это отмечает и Совет Европы. ИКАО также признает чувствительность биоинформации, поэтому разработала стандарты защиты и шифрования биометрических данных. Государства, которые применяют биометрические параметры, должны обеспечить безопасность сбора, хранения и доступа к такой информации.

Хранение и доступ

В системе хранения биометрических данных ключевую роль играет доступ к данным и надежность их хранения. Данные базы биометрии могут храниться в пределах юрисдикции одной страны, нескольких юрисдикциях одной страны (например, в разных штатах США), а также могут пересекать границы. Существует три вида хранения биоданных:

  • в централизованных базах данных в стране, выдающей паспорт;
  • в базах данных получателей виз в стране выдачи визы;
  • только на электронных чипах в паспортах.

Европейский суд неоднократно утверждал , что страны, использующие биометрику, должны обеспечить полную безопасность ее хранения на законодательном и техническом уровнях. Согласно европейскому регулированию о стандартах и безопасности биометрии, отпечатки пальцев должны использоваться только для верификации паспорта и личности его владельца, и только авторизованными служащими и службами. В том же регулировании в ст. 1(2) говорится, что персональные данные должны храниться в защищенном носителе в паспорте.

При хранении в централизованной системе все данные в целом подвержены риску несанкционированного доступа или хакерской атаке, когда хранение информации только на чипе в паспорте не позволяет получить нелегальный доступ ко всем биоданным. Это касается не только биопаспортов, но и визовых систем. Например, при получении Шенгенской визы необходимо сдавать отпечатки 10 пальцев. Отпечатки хранятся в централизованной системе VIS, которая соединяет системы стран-участниц Шенгенского соглашения и позволяет им обмениваться данными. Данные каждого человека хранятся 5 лет, и любой человек может запросить удаление незаконно собранной или неправильной информации.

Однако и сами биопаспорта создают риск утечки данных. ИКАО неоднократно отмечала возможность перехвата данных во время их считывания машиной. Перехват возможен даже с расстояния нескольких метров, а при использовании специальной техники расстояние можно увеличить. Более того, эксперты отмечают , что при сканировании биопаспортов до сих пор используется технология 2007 года, которая не предполагает предварительную проверку того, авторизован ли сканер для проверки данного паспорта. Во избежание утечки данных ИКАО рекомендует их зашифровывать и использовать систему ключей доступа. Система ключей доступа – это целая инфраструктура, направленная на гармонизацию взаимодействия между разными странами. Шифровка данных все же не отменяет риск несанкционированного доступа к ним.

Из-за сохраняющихся проблем, использование биометрии в паспортах вызвало немало споров вокруг правомерности создания баз данных в государственном управлении. Так, в Нидерландах попытка создать единую базу биоданных всех граждан повлекла за собой крупнейший коллективный судебный иск против внедрения биопаспортов. Теперь в Голландии хранят биоданные только на чипах в биопаспортах.

Чтобы минимизировать риски, перед началом сбора и внедрения биометрики следует создать надежную систему хранения данных, с помощью которой можно будет контролировать их использование и защитить от неавторизованного доступа. Государства Европейского Союза все еще находятся в процессе разработки и совершенствования биометрических систем и пытаются внедрять их постепенно. Учитывая общественный резонанс в отношении биоданных, в ЕС к проблеме пытаются подходить деликатно.

В следующих статьях сайт рассмотрит внедрение биометрии в странах постсоветского пространства – следите за обновлениями!

Биометрия — процесс сбора, обработки и хранения данных о физических характеристиках человека с целью его идентификации(Большой юридический словарь, 2007).

Киви Берд

Принято считать, что современные биометрические методы, вроде идентификации по отпечаткам пальцев или радужной оболочке глаза, обеспечивают беспрецедентный уровень надежности и защиты. На самом деле это весьма далеко от реальности.

Если заглянуть в четвертьвековой давности «Словарь иностранных слов» (издательство «Русский язык», 1984), то можно узнать, что биометрия — это специальный термин науки биологии для обозначения «совокупности приемов планирования и обработки данных биологического исследования методами математической статистики». Для уха человека современного не столь уж древнее определение звучит странновато.

Ближе к телу

Биометрия позволяет решать две основные задачи: аутентификация и идентификация людей. Еще одно активно разрабатываемое сейчас направление — автоматическое выявление угрожающих намерений человека в толпе по биометрическим особенностям его поведения. Для решения всех этих задач предложено и используется множество разных средств биометрического опознания, сильно варьирующихся по своим возможностям, стоимости, эксплуатационным ограничениям и степени надежности. Область биометрии переживает ныне столь бурный подъем, что характеристики многих систем удается улучшать на удивление быстро, но пока ни один из методов не может считаться абсолютно надежным. Для всех реально применяемых биометрических технологий имеются и неоднократно продемонстрированы соответствующие средства обмана.

Существенные перемены в основном значении слов — это всегда интересный признак эпохи. Ну а сдвиг в восприятии вполне конкретного слова «биометрия» — это, можно сказать, еще и выразительный символ значительных перемен в человеческом обществе, где некогда доминировали идеи научного прогресса во имя всеобщего блага, а теперь все больше говорят о роли науки и технологий в деле укрепления национальной и общественной безопасности.


В рекламе и на практике

Технологии опознания людей по их биометрии — по лицу, пальцам или ДНК, по ирису (радужной оболочке) глаза или рисунку вен, по голосу, походке, манере работы с клавиатурой и так далее — сегодня переживают эпоху бурного расцвета. На рынок ежегодно выводится масса новых и старых, но радикально усовершенствованных систем опознания, однако для неспециалиста адекватно оценить их надежность — задача довольно сложная. По свидетельству же независимых экспертов, вследствие общей незрелости технологии, запущенной в дело чересчур поспешно, доля продукции, и близко не дающей того, что сулят недобросовестные изготовители, в этом секторе рынка намного выше, чем в других областях индустрии инфотехнологий.

Аутентификация — проводимая с согласия человека проверка, что он действительно тот, за кого себя выдает. Обычно применяется для контроля доступа и в удостоверениях личности (биометрические замки, биометрические паспорта). Идентификация — установление личности без сотрудничества проверяемых, обычно через сравнение снятых с человека характеристик с теми, что хранятся в базах данных.

При этом обманутыми оказываются отнюдь не только рядовые потребители, защищающие, скажем, биометрическими замками свой компьютер или магазинчик, но и вполне серьезные государственные учреждения. Пресса об этом сообщает нечасто, но порой информация все же просачивается.

Так, в 2005 году британская тюрьма строгого режима Гленочил, где отбывают срок убийцы и другие опасные преступники, была вынуждена в срочном порядке отказаться от недавно установленной хайтек-системы безопасности на основе биометрических замков. В рамках модернизации, стоившей около £3 млн, все внутренние двери тюрьмы были оборудованы замками, отпирающимися без традиционных ключей — по отпечатку пальца надзирателя, наложенному на стеклянную панель и сопровождаемому вводом личного PIN-кода. Внешне все это выглядело замечательно, почти как в рекламе компании-продавца, однако в действительности надежность и безопасность подобных замков оказалась чистой фикцией.


Один из заключенных по случаю продемонстрировал изумленным надзирателям, что легко может обманывать новые биометрические запоры и беспрепятственно ходить фактически по всему зданию. Тут же начатое расследование показало, что данный метод обмана техники был известен многим из 420 заключенных по меньшей мере месяц, из-за чего в разных зонах тюрьмы стали возможны криминальные разборки и сведения счетов. Единственным способом прекратить это безобразие стало возвращение к прежней системе механических замков, когда у каждого надзирателя имеется к ним связка собственных ключей.

Из скупых сообщений прессы известно, что с аналогичными проблемами столкнулись и в других тюрьмах Британии, проводивших недешевую хайтек-модернизацию. И хотя администрация заведений не пожелала раскрывать способ, которым заключенные обманывали биометрическую систему, для специалистов по компьютерной безопасности в произошедшем не было абсолютно ничего удивительного или неожиданного. Личный PIN-код надзирателей содержал всего четыре цифры, которые внимательному глазу наблюдателя совсем несложно запомнить, ну а народных средств для обмана дактилоскопических — как и всех прочих биометрических — сенсоров существует великое множество.

Методы биометрии

Отпечатки пальцев Древнейший метод опознания, использовался тысячи лет назад в Вавилоне, Египте и Китае, систематически применяется с начала XX века. Миф об «абсолютной надежности» дактилоскопической экспертизы столь прочен, что по сию пору нет четко определенных вероятностей ошибок опознания, а эксперты говорят лишь, есть совпадение или нет. Главный недостаток дактилоскопии — сложности дистанционного снятия отпечатков, хотя новейшие технологии сканирования уже позволяют делать это на расстояниях порядка 5 метров. Лицо Метод опознания по лицу хорошо работает в задачах аутентификации, т. е. при сотрудничестве проверяемого, однако дает неприемлемо высокие проценты ошибок при разном освещении, повороте головы, переменах в мимике лица, не говоря уже об умышленном изменении внешности. Иначе говоря, все проведенные на сегодня попытки по внедрению систем опознания лиц для автоматического выявления разыскиваемых людей в толпе закончились неудачей. Радужка глаза По сравнению с пальцем глаз гораздо лучше защищен от повреждений, и при этом имеет намного более четкую и постоянную форму, нежели лицо. Главные достоинства технологии — быстрая скорость сканирования и низкий, в сравнении с другими методами, уровень ложных положительных опознаний. Основные недостатки — проверяемые обязаны смотреть строго в объектив камеры и опознание можно проводить только на небольшой дистанции, обычно до полуметра.

Забавные игрушки

Хотя биометрические средства опознания людей появились на рынке еще в конце XX века, резкий скачок в их повсеместном внедрении произошел после трагедии 11 сентября 2001 года. Власти США и многих других стран почему-то решили, что именно биометрия — одно из главных технических средств для борьбы с терроризмом и сохранения ценностей общества.

Сетчатка глаза Сканирование кровеносных сосудов, расположенных в глазном дне, используется крайне редко. Среди причин — проверяемые должны идти на сотрудничество, область сканирования труднодоступная и мелкая, оборудование сложно в эксплуатации. Об обмане систем опознания по сетчатке сведений нет, поскольку в настоящее время данная технология не имеет коммерческого применения. ДНК Метод ДНК-идентификации на сегодня считается самым надежным и применяется главным образом в криминалистике. Но широкого коммерческого распространения не получил, так как 1) требует взятия физического образца (волоса, крови) вместо простого снимка или записи биометрической характеристики; 2) тестирование (пока) не может быть сделано в режиме реального времени; 3) каждый раз, когда система опознания должна верифицировать человека, необходимо брать очередной образец клеток с ДНК. Голос Метод основан на индивидуальной манере произносить те или иные звуки речи. Технология имеет много преимуществ: проста в эксплуатации, дешева, не требует специального оборудования, кроме стандартной компьютерной техники с обработкой звука. Главные недостатки: многие могут иметь похожие голоса и манеру речи, а голос конкретного человека меняется в зависимости от здоровья, эмоционального состояния или возраста, на качество опознания влияют характеристики микрофонов и состояние канала связи (при дистанционном опознании по телефону). Кровеносные сосуды Кровеносные сосуды имеют более высокую температуру, чем остальное тело, поэтому четко прорисовываются на инфракрасном снимке. Для опознания делают снимок уникального для каждого человека рисунка вен и других подкожных структур, как правило, в области кисти руки — запястье, ладонь или ее тыльная сторона. Наибольшее распространение данная система получила в Японии.

Многие из независимых экспертов по защите информации с этой идеей категорически не согласились, поскольку биометрические средства безопасности вовсе не лишены недостатков, а их серьезные слабости отнюдь не являются секретом. Начиная примерно с 2002 года в узкоспециальных, как правило, изданиях, а изредка и в популярной компьютерной прессе регулярно появляются публикации о тотальном обмане и беспроблемном преодолении практически всех имеющихся на рынке средств контроля доступа на основе биометрии.


Системы распознавания по радужной оболочке ненадежны. Злоумышленники научились обманывать их, поднося к камере фотографию «нужного» глаза в высоком разрешении

Одно из самых впечатляющих исследований подобного рода появилось летом 2002 года, когда сотрудники германского компьютерного журнала «c"t» с помощью нехитрых подручных средств скомпрометировали сразу 11 систем биометрической верификации, работавших на основе трех базовых технологий — распознавания пальцев, лиц и радужной оболочки глаз пользователей. Выводы экспертов журнала вполне однозначны: все изучавшиеся системы приходится рассматривать скорее как забавные игрушки, а вовсе не «серьезные средства защиты», как позиционируют их фирмы-изготовители.

Если говорить об обмане систем аутентификации пользователя по отпечатку пальца с помощью емкостного сенсора на «мышке» или клавиатуре компьютера, то здесь простейший способ обмана — повторное «оживление» уже имеющегося отпечатка, оставленного зарегистрированным пользователем. Для такого оживления остаточного отпечатка иногда бывает достаточно просто подышать на сенсор либо приложить к нему тонкостенный полиэтиленовый пакет, наполненный водой. Еще эффективнее срабатывает более тонкая технология, когда оставленный «жертвой» отпечаток на стекле или CD посыпают мелкой графитовой пудрой, лишний порошок сдувают, а сверху накладывают липкую ленту, фиксирующую характерный узор папиллярных линий. Прикладывание такой ленты обманывает не только емкостные, но и нередко более строгие оптические сенсоры. Наконец, «искусственный палец», отлитый в парафиновой форме из силикона, позволил исследователям преодолеть все из шести протестированных систем на основе дактилоскопии.


Системы опознания по ирису глаза преодолевались ничуть не сложнее — подсовыванием фотографии глаза «жертвы» в хорошем разрешении. Похожими по сути приемами были скомпрометированы и все системы опознания по лицу — подсовыванием фотографии или экрана ноутбука с клипом, где снято лицо зарегистрированного пользователя.

Изготовители биометрических систем наверняка пытаются работать над улучшением своей продукции, но пока изменить ситуацию не удается. В 2009 году на хакерской конференции Black Hat DC в США был сделан доклад «Ваше лицо — это НЕ ваш пароль», подготовленный сотрудниками Bkis, одной из главных фирм по компьютерной безопасности во Вьетнаме. Суть доклада — анализ конкретных систем опознания по лицу, широко применяемых в современных ноутбуках от известных брендов: VerifaceIII (Lenovo), SmartLogon (Asus) и Face Recognition (Toshiba). Все эти изделия продаются как эффективные методы защиты компьютера от неавторизованного доступа. Однако, как показали исследователи, им удалось без проблем обмануть все три системы — используя вместо предъявления лица либо фотографии зарегистрированных пользователей, либо даже снимки других людей, измененные с помощью графического редактора.


Исследователи из Университета Пердью разработали методику идентификации с помощью масс-спектрометрического «сканирования» отпечатка. При этом играет роль не только рисунок, но и химический состав следа. Это позволяет отличать отпечатки, оставленные в разное время, поверх других, и предполагать, каких предметов касался подозреваемый до того, как оставил свой отпечаток.

Риски баз данных

Помимо систем контроля доступа, другим фундаментальным применением биометрии в безопасности являются системы автоматической идентификации, то есть установление личности человека по его биометрическим характеристикам путем их сличения с уже имеющимися материалами в базах данных. В настоящее время подобные базы во множестве стран стремительно разрастаются, не только массово накапливая информацию об отпечатках пальцев, лицах и ДНК миллионов людей, но и, бывает, объединяясь в гипербазы для тотального поиска. Поскольку всякий рост массивов анализируемых данных неизбежно влечет за собой и возрастание числа ошибочных совпадений, все чаще стали происходить случаи ложных опознаний — с серьезными последствиями для жертв таких ошибок.

Одна из самых громких, вероятно, историй подобного рода — «дактилоскопическое» дело американца Брэндона Мэйфилда. Эта история началась при расследовании террористических взрывов в Мадриде 11 марта 2004 года, где важнейшей уликой для следствия стал пластиковый пакет с детонаторами к бомбам и с отпечатками пальцев террориста. Данные отпечатки были запущены по базам международной розыскной системы, и для одного из них принадлежащая ФБР США крупнейшая в мире дактилоскопическая база IAFIS («Объединенная автоматизированная система идентификации по отпечаткам пальцев») обнаружила в своих хранилищах нужное соответствие. Три собственных эксперта ФБР и еще один приглашенный со стороны квалифицировали находку как «стопроцентно надежное» и «абсолютно неоспоримое совпадение».


Сопоставление индивидуальных пространственно-временных зависимостей в движении людей (анализ походки) оказалось бесперспективным. Метод иногда допускает автоматическое опознание людей в условиях плохой видимости, недостаточной, к примеру, для сканирования лица. В то же время анализ походки показал высокую степень ошибок в зависимости от обуви, длины одежды, степени опьянения человека и прочих сопутствующих условий.

Выявленный в базе IAFIS отпечаток принадлежал орегонскому адвокату Брэндону Мэйфилду, который мало того что был женат на мусульманке-египтянке и ранее защищал в суде человека, подозревавшегося в терроризме, так еще и сам обратился в ислам. Поскольку личность Мэйфилда практически идеально вписывалась в образ исламского экстремиста, адвоката, ясное дело, сразу посадили за решетку. И кто знает, чем это могло для него закончиться, не отлови испанская полиция другого человека, алжирца Унана Дауда, у которого не один, а все отпечатки пальцев совпали со следами на пакете с детонаторами. Арестованного в Америке адвоката-мусульманина пришлось, конечно, с извинениями отпустить, но «безупречная» репутация дактилоскопической идентификации из-за этой истории оказалась сильно подмочена.

Одновременно с ростом аналогичных централизованных баз с ДНК-данными начали поступать — также из США — известия о выявлении случайных совпадений в ДНК-профилях разных людей. Однако специфика генетической информации таит в себе риски и существенно иного рода: повышенный интерес к содержимому ДНК граждан проявляют те структуры, которым доступ к этой информации по закону не положен. К примеру, это могут быть страховые компании, желающие заранее знать о предрасположенности своих клиентов к определенным заболеваниям. Или же корпорации, при приеме или назначении сотрудника на ответственную должность пытающиеся собрать максимум доступной информации на кандидата. А централизованные ДНК-базы не только систематически накапливают подобную информацию, но и, как показывает практика, вполне могут пускать ее «налево».


В 2007 году в Великобритании разгорелся скандал вокруг национальной (и одной из крупнейших в мире) базы данных, накапливающей ДНК-образцы граждан. База принадлежит FSS, службе криминалистических наук правительства, а ее постоянно растущий массив данных содержит около пяти миллионов образцов ДНК. В 2005 году проект был приватизирован — с государством в качестве главного владельца, а администрация занялась активным поиском направлений для коммерческого использования накапливаемой информации. Одновременно тем же самым решила подзаработать не только администрация. Последовавший вскоре судебный процесс стал разбираться с пятью сотрудниками FSS, которые занялись похищением программного обеспечения и собственно данных из базы с целью создания собственного коммерческого сервиса, предлагающего те же самые массивы ДНК всем интересующимся…

Может быть и польза

Хотя в данном обзоре вполне умышленно собраны негативные — куда реже освещаемые прессой — стороны биометрических технологий, было бы несправедливо ограничиться одними лишь недостатками. Любая технология сама по себе не является ни плохой, ни хорошей, ибо все зависит от того, как именно люди ее применяют. В полной степени это относится и к биометрии.

Последние годы разработкой собственных приложений для биометрических технологий активно занимаются не только фирмы без-опасности, обслуживающие полицию или службы охраны, но и многие компании, выпускающие совсем другие товары повседневного употребления.

Методы биометрии, не получившие широкого применения

Динамический анализ подписи опознает человека по индивидуальной манере письма: переменам в давлении на перо, скорости движения пера между фиксированными позициями и так далее. Термография лица В картине тепла, излучаемого лицом человека, ток крови в сосудах под кожей формирует определенные структуры, которые можно регистрировать инфракрасной камерой. Метод ненадежен, т.к. на вид температурной карты лица влияют условия внешней среды и физическое состояние человека. Анализ походки Метод показал высокую степень ошибок в зависимости от обуви, длины одежды, степени опьянения человека и прочих сопутствующих условий. Исследования свернуты из-за бесперспективности направления. Геометрия руки или пальца Одно время активно разрабатывавшееся направление, не получившее, однако, популярности из-за меньшей надежности опознания по сравнению с отпечатками пальца или сканированием ириса. Форма уха Форма уха и структура хрящевой ткани в ушной раковине вполне индивидуальны и постоянны для каждого человека. Главное возражение против использования технологии — ухо часто бывает скрыто от сканирования головным убором или волосами. Резонанс черепа Через голову человека транслируются звуковые волны для выстраивания уникального сонарного профиля данного индивида. Сугубо экспериментальное направление исследований.

Например, ныне функции опознания лиц уже довольно широко реализованы в цифровых фотоаппаратах целого ряда фирм вроде Canon, Pentax или Fuji. Встроенные в них программы поиска могут автоматически находить в картинке кадра, выбранного для съемки, человеческие лица по их характерным признакам — глазам, ушам, носу и т. д. Если лицо одно, камера сама может настроить фокус исключительно на него, если же лиц несколько, то может вычислить усредненный фокус для всех. Или, скажем, фирма Sony первой выпустила цифровую фотокамеру, которая может удерживать затвор от срабатывания до тех пор, пока люди в кадре не улыбнутся, поскольку специальная программа анализирует лица на предмет счастливого выражения — положения уголков рта, размыкания губ, мимических морщинок вокруг глаз.


Другой пример интересного применения биометрии — новые версии программ iPhoto и Picasa для управления цифровыми фотоальбомами, куда их разработчики, Apple и Google соответственно, встроили функции распознавания лиц на снимках для удобного и быстрого поиска нужных фотографий. Отличие программ в том, что iPhoto работает на компьютере владельца и в процедуре настройки просит идентифицировать любым именем лишь тех людей, которых укажет хозяин альбома. Программа Picasa, с другой стороны, работает на серверах Google и при настройке пытается затребовать идентификацию ВСЕХ людей на снимке, причем их полными именами и с уникальными адресами электронной почты — очевидно, для организации перекрестных ссылок между альбомами разных владельцев. Не факт, что подобное «вторжение» в личный архив понравится каждому, но таковы уж, видимо, родовые особенности всех биометрических технологий.

(от био (См. Био...)... и... метрия (См. …метрия))

раздел биологии, содержанием которого являются планирование и обработка результатов количественных экспериментов и наблюдений методами математической статистики (См. Математическая статистика). При проведении биологических экспериментов и наблюдений исследователь всегда имеет дело с количественными вариациями частоты встречаемости или степени проявления различных признаков и свойств. Поэтому без специального статистического анализа обычно нельзя решить, каковы возможные пределы случайных колебаний изучаемой величины и являются ли наблюдаемые разницы между вариантами опыта случайными или достоверными. Математико-статистические методы, применяемые в биологии, разрабатываются иногда вне зависимости от биологических исследований, но чаще в связи с задачами, возникающими в биологии, сельском хозяйстве и медицине.

Б. как самостоятельная дисциплина сложилась к концу 19 в. в результате работ Ф. Гальтона (Англия), внёсшего большой вклад в создание корреляционного и регрессионного анализа (см. Корреляция, Регрессия), и К. Пирсона - основателя крупнейшей биометрической школы, подробно проанализировавшего, в частности, основные типы распределений, встречающиеся в биологии; он предложил один из самых распространённых статистических методов - «хи-квадрат» критерий, и развил теорию корреляции. Методология современной Б. создана главным образом Р. А. Фишером (Англия), основавшим свою биометрическую школу. Фишер впервые показал, что планирование экспериментов и наблюдений и обработка их результатов - две неразрывно связанные задачи статистического анализа. Он заложил основы теории планирования эксперимента, предложил ряд эффективных статистических методов (в первую очередь, Дисперсионный анализ), естественно вытекающих из своеобразия биологического эксперимента, и развил теорию малых выборок, начатую английским учёным Стьюдентом (В. Госсетом). Значительную роль в распространении биометрических идей и методов сыграли русские учёные В. И. Романовский, А. А. Сапегин, Ю. А. Филипченко, С. С. Четвериков и др.

Применение математико-статистических методов в биологии по существу представляет выбор некоторой статистической модели, проверку её соответствия экспериментальным данным и анализ статистических и биологических результатов, вытекающих из её рассмотрения. Выбор той или иной модели в значительной мере определяется биологической природой эксперимента. Любая модель содержит ряд предположений, которые должны выполняться в данном эксперименте; обязательно предположение о случайности выбора объектов из общей совокупности; очень распространено предположение об определённом типе распределения исследуемой случайной величины. Планирование эксперимента стало самостоятельным разделом Б., располагающим рядом методов эффективной постановки опыта (различные схемы дисперсионного анализа, последовательный анализ, планирование отсеивающих экспериментов и т.д.). Эти методы позволяют резко сократить объём эксперимента для получения того же количества информации. При обработке результатов экспериментов и наблюдений возникают 3 основные статистические задачи: оценка параметров распределения - среднего, дисперсии и т.д. (например, установление пределов случайных колебаний процента больных, у которых наблюдается улучшение состояния при лечении каким-то испытываемым лекарственным препаратом); сравнение параметров разных выборок (например, решение вопроса, случайна или достоверна разница между средними урожаями изучаемых сортов пшеницы); выявление статистических связей - корреляция, регрессия (например, изучение корреляции между размерами или массой разных органов животного или изучение зависимости частоты повреждения клеток от дозы ионизирующих излучений). Для решения экспериментальных задач наиболее эффективно применение методов многомерной статистики, позволяющих одновременно оценить не только влияние нескольких разных факторов, но и взаимодействие между ними; эти методы находят всё большее применение и для решения задач систематики. Широкое распространение получили и Непараметрические методы, не содержащие предположений о характере распределения случайной величины, но уступающие по эффективности параметрическим методам. В связи с запросами практики интенсивно разрабатываются методы изучения наследуемости (См. Наследуемость), выборочные методы и изучение динамических процессов (временные ряды).

Работы по Б. публикуются в журналах «Biometrica» (L., 1901-); «Biometrics» (Atlanta, 1945-); «Biometrische Zeitschrift» (B., 1959-), а также в различных биологических, с.-х. и медицинских журналах.

Лит.: Бейли Н., Статистические методы в биологии, пер. с англ., М., 1963; Рокицкий П. Ф., Биологическая статистика, 2 изд., Минск, 1967; Снедекор Д ж. У., Статистические методы в применении к исследованиям в сельском хозяйстве и биологии, пер. с англ., М., 1961; Урбах В. Ю., Биометрические методы, 2 изд., М., 1964; Финни Д. Д., Применение статистики в опытном деле, пер. с англ., М., 1957; его ж е. Введение в теорию планирования экспериментов, пер. с англ., М., 1970; Фишер Р. А., Статистические методы для исследователей, пер. с англ., М., 1958; Хилл Б., Основы медицинской статистики, пер. с англ., М., 1958; Хикс Ч., Основные принципы планирования эксперимента, пер. с англ., М., 1967; Fisher R. A., The design of experiments, Edinburgh-L., 1960.

Н. В. Глотов, А. А. Ляпунов, Н. В. Тимофеев-Ресовский.

  • - раздел вариац...

    Сельско-хозяйственный энциклопедический словарь

  • - Наука о применении статистических методов при исследовании живых организмов. Изучаются закономерности изменчивости и наследуемости хозяйственно-полезных признаков животных в стадах и популяциях...

    Термины и определения, используемые в селекции, генетике и воспроизводстве сельскохозяйственных животных

  • - самостоятельный раздел биологии и прикладной статистики, использующий методы математической статистики для анализа биологических данных и планирования исследования...

    Физическая Антропология. Иллюстрированный толковый словарь

  • - процесс сбора, обработки и хранения данных о физических характеристиках человека с целью его идентификации...

    Словарь юридических терминов

  • - раздел вариационной статистики, с помощью методов к-рого производят обработку эксперим. данных и наблюдений, а также планирование количеств, экспериментов в биол. исследованиях...

    Биологический энциклопедический словарь

  • - раздел биологии, осн. задачи к-рого - планирование количеств, биол. экспериментов и обработка результатов методами матем. статистики...

    Естествознание. Энциклопедический словарь

  • - раздел биологии, содержанием которого является планирование и обработка результатов экспериментов и наблюдений методами математической статистики...

    Большой медицинский словарь

  • - раздел прикладной математики, изучающий живые организмы при помощи методов вариационной статистики. Основы биометрии заложены в конце 19 в. английскими учеными Ф. Гальтоном и К. Пирсоном...

    Экологический словарь

  • - Раздел вариационной статистики, с помощью методов которого производят обработку экспериментальных данных и наблюдений, а также планирование количественных экспериментов в биологических...

    Словарь бизнес терминов

  • - и...метрия) раздел биологии, содержанием которого являются планирование и обработка результатов количественных экспериментов и наблюдений методами математической статистики...

    Большая Советская энциклопедия

  • - раздел биологии, основные задачи которого - планирование количественных биологических экспериментов и обработка результатов методами математической статистики...

    Большой энциклопедический словарь

  • - Р., Д., Пр....

    Орфографический словарь русского языка

  • - биометри/я,...

    Слитно. Раздельно. Через дефис. Словарь-справочник

  • - ...

    Орфографический словарь-справочник

  • - биом"етр"...

    Русский орфографический словарь

  • - Искусство вычислять продолжительность жизни...

    Словарь иностранных слов русского языка

"Биометрия" в книгах

Кивино гнездо: И биометрия на всех

Из книги Компьютерра PDA 03.04.2010-09.04.2010 автора Журнал «Компьютерра»

Кивино гнездо: И биометрия на всех Автор: Берд КивиОпубликовано 05 апреля 2010 годаВ первых числах апреля в Индии официально запущена очередная программа всеобщей переписи более чем миллиардного населения страны, которая будет проведена в 2011 году силами 2,5 миллионов

Биометрия

Из книги Большая Советская Энциклопедия (БИ) автора БСЭ

БИОМЕТРИЯ

Из книги Omert@. Руководство по компьютерной безопасности и защите информации для Больших Боссов автора Экслер Алекс

БИОМЕТРИЯ И ещё немного о действительно современных методах идентификации... Смарт-карты, е-token и прочие средства уже устарели. Потому что они не привязаны к конкретной личности и идентифицируются всего лишь паролем. Так что если данной конкретной личности дать по

Безопасность и биометрия в Windows 7 Александр Деревянко

Из книги Цифровой журнал «Компьютерра» № 45 автора Журнал «Компьютерра»

Безопасность и биометрия в Windows 7 Александр Деревянко Опубликовано 03 декабря 2010 года В современном мире вопросы информационной безопасности стоят особенно остро в силу нескольких причин. Это и важность сохраняемой информации, ее капиталоемкость,

Компьютерная биометрия

автора Гарфинкель Симеон

Компьютерная биометрия Несмотря на свою высокую точность, ни дактилоскопия, ни анализ ДНК не подходят для идентификации личности в повседневной жизни. Вариант с отпечатками пальцев неприемлем: за более чем 100 лет его сторонники не смогли избавить использование этой

Биометрия завтрашнего дня

Из книги Все под контролем: Кто и как следит за тобой автора Гарфинкель Симеон

Биометрия завтрашнего дня С 1989 по 1995 год я жил в доме, замок на входной двери которого управлялся системой распознавания голоса. Замок давал мне свободу и власть. Свобода заключалась в возможности выходить из дома без боязни забыть ключи: поскольку мой голос всегда был со

Божья биометрия

Из книги Статьи из газеты «Труд» автора Быков Дмитрий Львович

Божья биометрия прогноз от Д. БыковаБиометрические визы для въезда в Англию - только начало масштабной кампании по замене всех международных документов, и Россия не останется в стороне от этого всемирного процесса: с января 2008 года все желающие смогут получить

В январе 1999 года в журнале "Успехи физиологических наук" была опубликована статья В.Г. Солониченко и Н.Л. Делоне, в которой обоснована взаимосвязь особенностей генотипа человека и информативных морфогенетических вариантов головы, шеи, радужной оболочки глаз, гребешковой кожи ладоней и др. Наибольшее практическое применение среди них получили дерматоглифический (ДФ) и иридоглифический фенотипы (ИФ). В медицине и биологии параметры ДФ и ИФ, например, используют для описания особенностей генотипа, физиологических и поведенческих реакций, симптомов наследственных и врожденных болезней, в криминалистике - для идентификации личности, в антропологии - для описания вида и т.д. В настоящее время ДФ и ИФ являются чуть ли не единственными показателями функционального статуса человека. Однако широкое применение методов дерматоглифических и иридоглифических исследований затруднено из-за субъективной оценки типов узоров, плотности стромы радужной оболочки глаз и других параметров ДФ и ИФ.

Поэтому измерение особенности формы и структуры папиллярных узоров и радужной оболочки глаз, безусловно, является актуальной задачей. В этом случае результаты многовековых исследований ДФ и ИФ будут эффективно применены в медицине, генетики, антропологии, криминалистической экспертизе, профотборе и др.

В конце 20-го века сформировалось новое направление создания современных систем защиты от несанкционированного доступа на основе использования в качестве полезной информации статические биометрические характеристики человека (БХЧ)- параметры отпечатков пальцев, изображения радужной оболочки глаза (РОГ), голоса, изображения лица, и динамические БХЧ - параметры манеры работы на клавиатуре компьютера, динамики подписи, походки, потенциально обеспечивающих возможность явной и скрытой идентификации личности.

Первые биометрические системы предназначались для обеспечения доступа к информации в ПЭВМ и банковским счетам по голосу, отпечаткам пальцев, изображениям лица и РОГ. Производители биометрических устройств справедливо полагают, что их продукция надежнее паролей и микропроцессорных карточек. Основная доля доходов приходится на биометрические технологии по отпечаткам пальцев, геометрии рук и лица. Биометрические технологии получили поддержку со стороны Microsoft, объявившей о своем намерении обеспечить поддержку биометрической верификации в различных операционных системах семейства Windows.

Таким образом, и в задачах определения функционального статуса человека, и в задачах идентификации и верификации личности один объект исследования или источник информации - биометрические характеристики человека.

Настоящая статья посвящена потенциальным возможностям применения биометрическим систем в медицине и биологии, расширяющим их возможности и при применении по прямому назначению.

Биометрические технологии

Биометрика - область знаний, изучающая методы и средства измерения и формализации персональных физических характеристик и поведенческих черт человека, а также и их использование для идентификации или верификации человека.

Биометрической характеристикой человека (БХЧ) называются результаты измерения элемента фенотипа человека или поведенческой черты, в процессе сравнения которых с аналогичными, ранее зарегистрированными БХЧ (эталон, шаблон) реализуется процедура идентификации или верификации личности.

Биометрическая система представляет собой автоматизированную систему, решающую задачи идентификации или верификации личности и реализующую следующие операции:


  • регистрации выборки БХЧ от конкретного пользователя;

  • формирование вектора биометрических данных из выборки БХЧ;

  • формирование биометрического вектора признаков;

  • сравнение биометрических векторов признаков с эталонами (шаблонами);

  • принятие решения о соответствии сравниваемых БХЧ;

  • формирование результата о достижении идентификации (верификации);

  • принятие решения о повторении, окончании или видоизменении процесса идентификации (верификации).

Методы формирования и применения БХЧ в целях идентификации или верификации личности называются биометрическими технологиями (БТ). В БТ используются как статические, так и динамические источники БХЧ. Примеры источников статических БХЧ приведены на рисунках.

Графический образ

Используемые особенности


  • Форма лица (овал, форма и размер отдельных деталей лица)

  • Геометрические параметры лица - расстояния между его определенными точками

  • Узор подкожных кровеносных сосудов на термограмме лица


  • Структура радужной оболочки глаза

  • Узор кровеносных сосудов на сетчатке


  • Форма уха (контур и наклон, козелок и противокозелок, форма и прикрепление мочки и т.д.)

  • Геометрические параметры уха - расстояния между определенными точками на ухе


  • Геометрия руки - ширина, длина, высота пальцев, расстояния между определенными точками

  • Неровности складок кожи на сгибах пальцев тыльной стороны кисти руки

  • Рисунок вен на тыльной стороне кисти руки, получаемый при инфракрасной подсветке

  • Узор на ладони


  • Папиллярный узор как целостный образ

  • Параметры минуций (координаты, ориентация, тип)

  • Параметры пространственно-частотного спектра папиллярного узора


  • Подпись как двумерный бинарный образ

  • Подпись как функция двух координат

  • Динамика подписи (сила нажима и координата времени)

Выбор источника БХЧ является основной задачей при создании конкретных БТ. Идеальная БХЧ должны быть универсальной, уникальной, стабильной, собираемой. Универсальность означает наличие биометрической характеристики у каждого человека. Уникальность означает, что не может быть двух человек, имеющих идентичные значения БХЧ. Стабильность - независимость БХЧ от времени. Собираемость - возможность получения биометрической характеристики от каждого индивидуума.

Реальные БХЧ не идеальны и это ограничивает их применение. В результате экспертной оценки указанных свойств таких источников БХЧ, как изображения и термограммы лица, отпечатков пальцев, геометрии руки, РОГ, изображения сетчатки, подписи, голоса, изображения губ, ушей, динамики почерка и походки установлено, что ни одна из характеристик не удовлетворяет требованиям по перечисленным свойствам (см. таблицу). Необходимым условием использование тех или иных БХЧ является их универсальность и уникальность, что косвенно может быть обосновано их взаимосвязью с генотипом или кариотипом человека.

Экспертная оценка свойств БХЧ

Источник БХЧ Универсальность Уникальность Стабильность Собираемость
Видеообраз лица +++ + ++ +++
Термограмма лица +++ +++ + ++
Отпечаток пальца +++ +++ +++ ++
Рука ++ ++ ++ +++
Радужная оболочка глаза ++ +++ +++ ++
Сетчатка +++ +++ ++ +
Подпись + + + +++
Голос ++ + + ++
Губы +++ +++ ++ +
Ухо ++ ++ ++ ++
Динамика письма ++ +++ + +++
Походка +++ ++ + +


Как следует из таблицы, ни одна из БХЧ полностью не удовлетворяет требованиям по перечисленным свойствам. В настоящее время, несмотря на средние показатели по затратам и точности, БТ на основе отпечатков пальцев занимает лидирующее положение по продажам, что в значительной степени определяется созданным методическим, техническим и алгоритмическим заделом, хорошими эксплутационными характеристиками.

В процессе исследований были определены семантические свойства БХЧ. В частности, установлено, что в каждом отпечатке пальца существуют два типа признаков, используемые при идентификации: глобальные и локальные. К глобальным относятся: тип папиллярных узоров: дуга, петля и завиток, центр узора и дельта узора, локальный гребневой счет (ЛГС), который определяется для каждого узора как число гребней на расстоянии "дельта-центр", их ориентация и расположение на пальцах и ладонной поверхности.

К локальным признакам относят минуции (см. рисунок), определяемые как точки изменения структуры папиллярных линий (разрыв, окончание, раздвоение и т.п.). На отпечатке пальца насчитывают до 50-70 минуций. Принято считать, что в отпечатках пальцев разных людей могут встретиться идентичные глобальные признаки, а картина минуций является уникальной.

Типы минуций, используемых при дактилоскопических исследованиях
1 - фрагмент папиллярной линии
2 - начало папиллярной линии
3 - глазок
4 - бифуркация-разветвление
5 - крючок
6 - мостик
7 - островок
8 - точка
9 - окончание папиллярной линии
10 - бифуркация-слияние
11 - включения

В биометрических системах на основе РОГ сформировались два основных подхода, отличающиеся способами представления образов и эталонов. В первом подходе используются непосредственно изображения РОГ, выделенные с помощью колец или развернутые в виде прямоугольника. Во втором подходе формируется матрица штрих-кодов РОГ. Процедура получения матрицы содержит этапы выделения лица, локализацией глаз и зрачка. Значение каждого пикселя изображения сравнивается с некоторым порогом и в зависимости от результатов сравнения записывается как "0" или "1" в определенное место матрицы штрих-кодов.

Информативные морфогенетические варианты

В практике медико-генетического консультирования используются понятия информативных морфогенетических вариантов (ИМВ) или малых аномалий развития. Это аномальные варианты морфологии отдельных органов или тканей, не имеющих медицинского значения, то есть не требующих лечения. Возникновение этих вариантов связывают с эмбриональным или, что реже, с плодным периодом морфогенеза человека. В клинической генетике и синдромологии малые аномалии развития, особенно когда их насчитывается у человека более трех, важный диагностический признак, свидетельствующий о высокой вероятности серьезных нарушений морфогенеза в виде врожденных пороков развития, требующих специальной диагностики и последующих хирургических вмешательств. У человека описаны более 200 информативных морфогенетических вариантов, хотя и в клинической практике обычно используется не более 80 малых аномалий развития.

Более 70% всех ИМВ располагаются в области головы, шеи и кисти, что подтверждает возможность использования изображений лица, головы, ее элементов, изображений рук для идентификации личности. Именно ИМВ Чарльз Дарвин использовал в качестве одного из доказательств эволюционного происхождения человека, называя эти признаки "зачаточными органами". Но еще более значимым является представление Чарльза Дарвина о том, что "признаки небольшого жизненного значения для вида наиболее важны для систематика" и "...такое значение несущественных признаков для классификации зависит преимущественно от их корреляции с другими более или менее существенными признаками. Значение же комплекса признаков в естественной истории совершенно очевидно".

Особое значение среди информативных морфогенетических вариантов занимает дерматоглифика, так как узоры гребневой кожи человека характеризуются двумя, казалось бы, взаимоисключающими особенностями: с одной стороны, они уникальны для каждого человека, что используется в криминалистике, а с другой - поддаются четкой качественной и количественно типизации, что отражено в международной классификации дерматоглифики. Кроме того, генетическая детерминация узоров дермальной кожи не вызывает сомнений. К настоящему времени известно о большом количестве врожденных и наследственных заболеваний, характеризующихся изменениями дерматоглифики, а при ряде хромосомных и моногенных синдромов дерматоглифика является диагностическим методом.

Общность эмбрионального происхождения дермальной кожи и центральной нервной системы позволило предположить связь признаков дерматоглифики не только с неврологической и психиатрической патологией, но и с особенностями нормальной ЦНС. Так была обнаружена корреляция некоторых узоров дерматоглифики с определенными параметрами электроэнцефалограммы. Дерматоглифика служит и надежным маркером морфогенетических асимметрий, что, в частности, можно использовать в изучении межполушарной асимметрии мозга человека. Другие признаки дерматоглифики - минуции, применяемые в настоящее время в дактилоскопии и в биометрике для идентификации человека в медико-генетическом консультировании пока не применяются, в первую очередь из-за отсутствия возможности измерения их параметров.

Исследователи отмечают отражение на РОГ генетических особенностей. "...Радужка является непревзойденным отражателем врожденных недостаточностей, закрепленных в генотипе" Вельховер Е.С. "Радужка - единственная структура, отображающая врожденные дефекты, передаваемые по наследству до 4-го поколения" Jensen B.

Таким образом, элементы фенотипа, имеющие генетическую детерминированность: голова, лицо, уши, нос, область рта, шея, узоры гребешковой кожи ладонной поверхности, структура и цвет РОГ, туловище, стопы и др. могут быть использованы как для решения биометрических, так и для диагностических задач. Поэтому электроэнцефалограмма, электрокардиограмма, фотоплетизмограмма и другие физиологические реакции, имеющие выраженные признаки индивидуальности, также могут быть использованы в качестве источников БХЧ. Аналогичные соображения могут быть положены в основу использования для идентификации человека параметров походки, почерка и др.

Однако в медико-биологической практике наиболее широкое применение нашли результаты дерматоглифических исследований, что во многом было обусловлено возможностью регистрации красковым способом дерматоглифических изображений и созданного на этой базе существенного научного задела. К сожалению, из-за отсутствия возможности качественной регистрации других фенотипических изображений человека: РОГ, лица, головы и т.д., не удалось создать адекватный по уровню задел, обеспечивающий эффективное применение результатов иридоглифических, антропометрических и др видов исследования в медико-биологической практике.

Применение дерматоглифических исследований в медико-биологической практике

Под дерматоглифическими исследованиями понимают изучение особенностей гребешковой кожи ладоней и подошв. Наиболее доступные в распознавании и информативные параметры пальцевой дерматоглифики рук - узоры на дистальных фалангах пальцев. Различают 3 группы узоров: дуги, петли, завитки и S-узоры (см. рисунок). Интенсивность узоров (дельтовый индекс - ДИ) оценивается по наличию дельт: дуга (А) - бездельтовый узор (оценка 0), петля (L) - однодельтовый узор (оценка 1), завиток(W) и S-узор - двудельтовые узоры (оценка 2), т.е. максимальная оценка интенсивности узоров - 20, а минимальная - 0 (сумма дельт на 10 пальцах), самый простой узор - дуга, самый сложный - завиток и S-узор. Тип узора является качественной характеристикой, а гребневой счет (ГС) на каждом пальце (количество кожных гребешков внутри узора) и на 10 пальцах рук (суммарный гребневой счет - СГС) - количественной характеристикой. Фенотип пальцевой дерматоглифики определяется комбинацией узоров на 10 пальцах: A, AL, LA, ALW, L, LW, WL, W.

Типы папиллярных узоров. Определение локального гребневого счета


Дуга, А


Петля, L


Завиток, W


S-узор, S

Дерматоглифические признаки формируются на 3-5 месяце беременности одновременно и в связи с развитием нервной и эндокринной системами и не изменяются в онтогенезе. Морфогенетическая природа позволяет считать комплекс пальцевой дерматоглифики морфогенетическим маркером.

В процессе исследований была установлена диагностическая значимость дерматоглифических признаков при прогнозе: заболеваний, связанных с врожденными патологиями и пороками развития; нарушений психомоторной и психоличностной сферы, выявлена связь пальцевой дерматоглифики с физическими способностями человека, особенностями телосложения, профессиональными возможностями, темпами пренатального роста производных эктодермы, отдельными показателями нейро-миодинамического комплекса.

В простейшем случае результатом исследования дерматоглифического фенотипа человека является таблица, в которой указаны тип узоров, значения визуально определенных гребневых счетов узоров, ориентация узоров по отношению к ребру ладони (из методики).

Спортивная медицина

Прогноз уровня и характера физических возможностей человека чрезвычайно важен для решения вопросов профессиональной ориентации и подбора лиц, отличающихся адекватным виду спортивной деятельности генотипом, включающим наследственно детерминированные признаки и адаптационный диапазон.

Абрамова Т.Ф. с коллегами, используя в качестве генетических маркеров дерматоглифические признаки (ДП), при обследовании более 2000 испытуемых разного пола и уровня физических способностей, среди которых 1559 спортсменов в возрасте 14 - 36 лет разной квалификации (представители 25 видов спорта), 69 детей и взрослых в возрасте от 2 до 40 лет с врожденно ограниченным уровнем физических способностей (детский церебральный паралич - ДЦП) и контрольной группы из 202 студента московских вузов в возрасте 18-24 лет и 291 детей и подростков 4-16 лет Москвы и Московской области установили:


  • закономерности изменения пальцевой дерматоглифики у представителей определенных групп видов спорта и их отдельных дисциплин в зависимости от различий биомеханики двигательных действий, доминанты основного физического качества и ведущего механизма энергообеспечения;

  • взаимосвязь различия в амплуа спортсменов по времени соревновательной дистанции, специфике двигательных действий и приоритетным механизмам энергообеспечения и направления изменчивости пальцевой дерматоглифики.

Изучение дерматоглифики 299 бразильских баскетболистов и волейболистов выявило те же тенденции в уровне и соотношении основных признаков ДП в зависимости от ролевой функции у спортсменов национальной команды страны. Полученные данные были подтверждены различиями изменений ДП в квалификационной динамике: клубный уровень 1-ая лига национальная команда. Принимая во внимание неоднородность расового и этнического представительства в составе бразильских команд (негры, индейцы, португальцы, испанцы и др.), а также их высокий соревновательный рейтинг на международной арене, данные указывают на приоритет требований деятельности, перекрывающей этнические и расовые влияния.

На примере представителей академической гребли (вида спорта с широким спектром показателей физических возможностей) установлено, что фенотипы с минимальными значениями тотальных признаков пальцевой дерматоглифики и преобладанием дуговых узоров при практической элиминации завитковых узоров соотносятся с низким статусом развития физических качеств и размеров тела. Преобладание петлевых при высокой частоте дуговых узоров и низкой доли завитков маркирует предрасположенность к развитию скоростно-силовых качеств. Напротив, интегральное усложнение при полной элиминации простых узоров является указателем врожденного приоритета развития нервно-мышечной координации. Фенотипы с промежуточными значениями признаков пальцевой дерматоглифики, близкими к известным данным представителей русской популяции, отражают общую предрасположенность к развитию качества выносливости.

Изменения физических возможностей от явной скоростно-силовой доминанты к приоритету выносливости и с их завершением в виде превалирующей значимости механизмов управления координацией движений на уровне частных признаков пальцевой дерматоглифики определяются первичными изменениями характеристик первых пальцев обеих рук с начальным усложнением узоров при последующем возрастании гребневого счета. Изменения на других пальцах носят вторичный характер.

Сопоставление частот фенотипов ДП в спортивной "субпопуляции" и общепопуляционном контингенте показали, что наличие дуговых узоров является маркером низкого физического статуса, включая как основные физические качества, так и размеры тела.

При изучении особенностей ДП в случае врожденного ограничения развития двигательных возможностей также показана прямая связь снижения СГС/ДИ с низким уровнем развития физических возможностей. При сходстве значений ДИ величина СГС убывает в зависимости от тяжести заболевания, что проявляется в последовательном снижении пропорции СГС/ДИ от 10/1 - в контроле до 8/1 - в случае частичных врожденных нарушений и 7/1 в случае - тяжелых врожденных нарушений двигательных возможностей.

Обнаруженные параллели указанных признаков ДП со сниженным физическим потенциалом находят косвенное объяснение в установленных другими исследователями фактах преобладания дуговых узоров на фоне часто сниженного гребневого счета при врожденных нарушениях развития различной этиологии.

Профессиональный отбор

В настоящее время накоплено немало данных о связи узора гребневой кожи на дистальных подушечках пальцев человека (дерматоглифика) с морфо-функциональной организацией его ЦНС. Учитывая общий генетический источник развития кожи и нервной системы можно предположить, что узоры на концевых фалангах пальцев могут служить информационным маркером врожденных индивидуальных психологических особенностей личности человека, определяющих его поведение.

В результате исследований взаимосвязи расположения и ориентации пальцевых узоров и значений средней гребневой частоты (аналог ГС) на аппаратно-программном комплексе для дерматоглифических исследований "Малахит" удалось установить, что параметры дерматоглифики большого, указательного и триады других пальцев образуют систему статистически независимых признаков. При сравнении типа узоров на большом, указательном и безымянном пальцах с индивидуальными способностями обследуемых лиц оказалось, что чем сложнее тип узора, тем более развита функция системы, проекционная зона которой расположена на пальце. То есть, существует взаимосвязь ДП и особенностей строения модулирующих систем головного мозга, выполняющих основную функцию при формировании условных рефлексов (например, обучении) и при реализации безусловных рефлексов (поведении), что обуславливает возможность обоснованного профессионального отбора.

Анализ корреляционных отношений между кожными пальцевыми узорами и мотивационным состоянием человека позволяет не только спрогнозировать алгоритм поведения, но и определить оптимальную сферу его дальнейшей профессиональной деятельности. Перспективность подобного подхода была показана в исследованиях личностных характеристик студентов МГТУ им. Н.Э. Баумана (далее МГТУ) и ММА им. И.М. Сеченова (далее ММА) при оценки их профессиональных способностей. Анализ распределений значений ДИ у студентов ММА, студентов МГТУ и юношей со средним образованием (СО) позволил сделать заключение, что значения ДИ, равные 10-12 и 16-18 отражают "технические " склонности, значения ДИ: 10-16 - "гуманитарные" склонности представителей контингента.

Для оценки информативности ДП для профессионального отбора были исследованы комбинации типов пальцевых узоров у юношей - студентов ММА (57), студентов МГТУ (44) и юношей СО (118). В составе студентов также были выделены студенты (отличники), у которых средний балл успеваемости выше либо равен 4,7, предполагая, что успеваемость студентов характеризует не только их способность к обучению, но и наличие других высоких профессиональных качеств. В результате обработки полученных данных была выявлена тенденция, что сложность папиллярных узоров на 1, 6 и 7 пальцах является индикатором мотивации к получению знаний.

В качестве примера, на рисунке представлены три диаграммы типов узоров на десяти пальцах успевающих студентов МГТУ им. Н. Э. Баумана.

Диаграммы типов узоров успевающих студентов

Первый студент легко усваивает учебный материал, быстро реагирует на вопросы, инициативен, любознателен, выполняет большой объем факультативных работ, хорошо излагает мысли. Потенциальный инженер-разработчик высокого класса.

Для второго студента усвоение учебного материала требует определенных усилий и самостоятельной работы. При наличии личной мотивации к обучению или мотивации к изучению дисциплин в минисоциуме (студенческой группе) успехи в учебе будут высокими и стабильными. Максимальная сложность узора на безымянном пальце проявляется в притягательности для него практической работы, требующей координированных движений. Потенциальный инженер-испытатель, доводящий до практического применения новую разработку.

Третьему студенту для качественного усвоения учебного материала требуется большой объем самостоятельной работы. Его успехи зависят от мотивации и обусловлены огромной работоспособностью в любом виде деятельности, в том числе и умственной. Вид инженерной профессиональной ориентации - инженер-проектировщик.

Диагностика наследственных и врожденных болезней

Информация о расположении, ориентации, типа узора и значению его ЛГС позволяет установить наличие наследственных и врожденных заболеваний. Результат интерпретации зависит от выраженности дерматоглифических проявлений заболеваний. В ряде случаев, например при таких психосоматических заболеваниях, как синдром Шершевского - Тернера, синдром Клайнфельтера в пространстве ДП можно даже поставить диагноз.

Врач-генетик В.Г. Солониченко и нейрофизиолог Н.Н. Богданов установили близость узоров на одноименных пальцах у родителей и ребенка, причем возможность появления ребенка с психосоматическими заболеваниями также может быть установлена по выраженности ИМВ у родителей - практически здоровых индивидуумов. Сравнительно недавно установлено еще одно важное достоинство метода дерматоглифической диагностики - возможность выявления носительства мутантных генов у практически здоровых индивидуумов. Это было, в частности, показано на примере врожденных расщелин губы и врожденных расщелин нёба. Семейный анализ папиллярных узоров и линий показал наследственную тенденцию по всем ладонным признакам кожного покрова.

Применение биометрических технологий для иридоглифических исследований

Иридоглифическим признакам (ИП), как и дерматоглифическим, свойственна чрезвычайно высокая индивидуальная и групповая изменчивость наряду с высоким уровнем наследуемости по отдельным признакам. В то же время ИП весьма лабильны и отражают не только генетические, но и текущие изменения в организме.

Иридоглифику отличают раннее обнаружение патологического процесса, быстрота получения результатов; возможность осмотра в одном поле зрения органных и системных взаимоотношений в организме (интегральный анализ), простота и безвредность обследования. В противоположность клинической медицине, ставящей целью определение болезни, иридоглифика позволяет осуществлять широкий поиск наследственных и врожденных особенностей, а также оценить характер, условия и возможность возникновения и развития заболеваний.

Однако результаты иридоглифического исследования использовались, как правило, для дифференциальной диагностики болезней, и поэтому в определенном смысле дискредитировали метод.

РОГ - передняя часть сосудистого тракта, расположенная между роговицей и хрусталиком, имеет вид пластинки слегка эллиптической формы. Ее периферический край заходит за роговично-склеральный лимб, переходя в циллиарное тело. Горизонтальный диаметр РОГ человека в среднем составляет 12,5 мм, вертикальный - 12 мм, и имеет вид усеченного и очень уплощеного конуса. Толщина РОГ неодинакова и в среднем составляет 300 мкм.

РОГ, как и кожа ладонной поверхности и биологически активных точек (БАТ), имеет развитую архитектонику сосудов кровеносной системы и волокон нервной системы, обеспечивающих рефлекторную функцию.

Гипотетически отображение патогенных изменений проявляется на РОГ следующим образом. Пока человек здоров и его иридоневральные пути функционируют нормально, РОГ выглядит однородной, равномерно окрашенной и рельефной. В острой стадии болезни, наряду с просветлением РОГ, происходит набухание и расщепление радиальных волокон радужки и нарушается линейность трабекул. Они становятся волнистыми, спиралевидными, расслоенными задолго до появления клинических признаков заболевания. Эти процессы свидетельствуют об ослаблении сопротивляемости организма. Если острое воспаление за короткий срок заканчивается выздоровлением, то изменения на РОГ регрессируют.

Несмотря на значительное число информационных признаков РОГ (не менее 19), контролируемых параметров, значениями которых в той или иной комбинации можно описать каждый из них, всего шесть. Наиболее характерными параметрами ИП являются: цвет, форма, локализация и структура признака, которые в дальнейшем будем называть комплексом иридоглифических параметров (КИП).

Цвет характеризует адаптационные возможности организма, например, чувствительность к внешним воздействия у светлоглазых в 2 раза выше чем у лиц со светлокарими глазами и в 4 раза выше, чем у лиц с темнокарими глазами. Для достижения лечебного эффекта доза лекарств у последних должна быть большей, чем для пациентов со светлыми глазами. Как показали исследования, можно выделить четыре цвета РОГ: карие, светлокарие, серые и серые с гетерохромией.

Чем выше плотность РОГ, тем лучше способность организма сопротивляться заболеваниям, переносить изменения условий окружающей среды. Оценка этих способностей важна не только в клинической практике, при выборе тактики реабилитации конкретного пациента, но и в работе различного рода медицинских комиссий при направлении на работу в отдаленные районы, оценке усредненных репаративных особенностей социума, проживающего в загрязненном районе. В качестве примера, можно привести результаты врача Гамиуллина Ф.З, который снизил количество нетрудоспособных дней у работающих в неблагоприятных климатических условиях в двадцать раз, используя при отборе значения иридогенетических симптомов и направляя на работу только лиц с высоким иридогенетическим статусом.

Научно-исследовательский и испытательный центр биометрической техники
Московского Государственного Технического Университета имени Н.Э. Баумана
http://biometric.bmstu.ru/category/primenenie_biometrii
__________________________________

Министерство образования и науки Республики Казахстан

При проведении зоотехнических экспериментов, ветеринарных исследований, научных наблюдений в научно-исследовательских институтах, на опытных станциях, на фермах совхозов и колхозов возникает необходимость в выявлении таких закономерностей, которые обычно скрыты случайной формой своего проявления. Определение надежности научных диагнозов и прогнозов, выдвижение научных рекомендаций о массовом применении новых методов кормления, разведения, лечения и репродуктивного использования сельскохозяйственных животных требует установления достоверности результатов тех исследований, на основе которых делаются соответствующие выводы и даются рекомендации.

Генетический анализ, как и большинство теоретических и прикладных экспериментальных зоотехнических и ветеринарных работ, включает применение математико-статистических методов. О степени развития любой науки можно судить по тому, насколько она применяет методы математики (по К. Марксу).

Использование достижения современной биометрии - науки о способах применения принципов и методов теории вероятности и математической статистики в биологии вообще и в зоотехнии и ветеринарии в частности - позволяет выделять новые закономерности явлений жизни и событий животного мира. С помощью методов математического анализа можно установить, насколько точно достоверно данные, полученные на отдельной не большой группе животных (выборке), отражают особенности всех животных (генеральной совокупности).

Методами биометрического анализа пользуются как научные работники и специалисты животноводства, так и преподаватели, аспиранты и студенты вузов.

В настоящее время имеется много изданий фундаментальных пособий по биометрии, однако им присуща теоретическая направленность, позиционно - математическое изложение, что создает трудности студентам самостоятельно освоить и применять биометрические методы при обработке своих исследований.

Ф. Гальтон сформулировал закон регрессии , это положение нашло отражение в современной генетике под названием коэффициента наследственной детерминации аддитивного генотипа-потомка, имеющего предков в свободно скрещивающейся популяции.

Философские концепции К. Пирсона были откровенно идеалистическими, однако открытие им в области математической статистики среднее квадратичное отклонение, коэффициент вариации, метод хи-квадрат, коэффициенты прямолинейной и криволинейной корреляции нашли широкое применение как генетико-селекционных исследованиях, так и в других областях науки и техники.

Большую роль в развитии теории вероятности сыграли классические исследования великих русских математиков и.

Датский ученый изложил методические основы генетического анализа: чистые линии, математическая обработка и искусственное скрещивание.

Г. Харди (Англия) и А. Вайнберг (Германия) заложили основу для современной популяционной генетики.

В. Госсет (псевдоним Стьюдент) обосновал теорию малых выборок.

Агроном, работавший на Ротамстедской опытной станции (Великобритания), предложил метод дисперсионного анализа .

предложил ряд математических формул, применяемых в генетическом анализе, в частности, формулу выражения закона Менделя.

Велики заслуги в становлении математических методов генетического анализа.

В последнее время в нашей стране и за рубежом выпущен ряд пособий и учебников по биометрии: «Биологическая статистика» и «Введение в статистическую генетику», «Статистические методы в применении к исследованиям в сельском хозяйстве и биологии», «Биометрия», «Руководство по биометрии для зоотехников», «Биометрия в животноводстве», «Введение в генетику количественных признаков», «Биометрия» и др.

1.2 Основные понятия теории вероятности

Теория вероятности имеет дело с изучением закономерностей случайных событий. Для понимания статистического подхода к изучаемым явлениям нужно ознакомиться с некоторыми понятиями и методами теории вероятности.

Опыт - процесс, в ходе которого могут осуществляться (или не осуществляться) события, которые можно зафиксировать при наблюдениях. Известные, существующие объективно или созданные экспериментатором явления, влияющие на ход опыта, называются условиями. События, которые могут произойти в данном опыте, называются исходами. Условия данного опыта вместе с множеством исходов составляют испытание.

Событие, которое в определенных условиях происходит обязательно, называется достоверным; которое не может произойти – невозможным; которое может возникнуть, но может и не возникнуть - случайным.

Вероятность - это числовая характеристика степени возможности появления какого - либо события, которое может повториться неограниченное число раз.

Вероятность достоверного события полагается равной единице, невозможного - нулю.

Если в опыте появление одного события исключает появление другого, то эти события называются несовместимыми, в противном случае такие события называются совместимыми.

Случайность есть форма проявления необходимости и в то же время дополнение необходимости.

Диалектико-материалистические представления об объективной случайности как форме необходимости дает возможность правильно оценивать многочисленные факты статистических закономерностей в явлениях природы и в том числе в явлениях изменчивости и наследственности.

Статистические закономерности не дают возможности предсказать появление отдельных событий, так как отдельное событие имеет только свою вероятность появления. Главная особенность статистических закономерностей заключается в том, что они помогают предвидеть свойства больших совокупностей и предсказать в них частоту определенных событий.

В основе всех статистических методов, которые широко используются в статистической генетике, лежит теория вероятности. Некоторые специфические для статистической генетики методы, составляющие техническую основу, рассматривается в данной работе.

1.3 Статистическая совокупность, ее свойства, терминология и символика

Следует знать, что биометрия - это математическая статистика в приложении к явлениям живой природы. С помощью методов вариационной статистики она изучает их изменчивость и наследственность.

Объектом исследований биометрии являются животные, у которых изучают закономерности изменения и проявления признаков.

Закономерности изменчивости и наследственности устанавливаются на массовом материале, полученном на многочисленных экземплярах.

Любое количество отдельных объектов, отличаются друг от друга и в тоже время сходных по многим признакам, составляет совокупность, которую разделяют на генеральную и выборочную.

Генеральную совокупность образуют особи, которые интересуют исследования с точки зрения особенностей изменчивости и наследственности их признаков (например, совокупность всех животных какого-то стада, породы в целом или данного региона). Но, как правило, обследовать всех животных, а тем более провести на них какой - либо эксперимент, не всегда представляется возможным, так как это требует больших затрат средств и времени. Поэтому изучают (подвергают эксперименту) только часть особей генеральной совокупности.

Выборочная совокупность (выборка) – это группа особей, выделенная методом случайного отбора из генеральной совокупности для проведения на ней исследований. Выборка может с определенной степенью достоверности характеризовать всю генеральную совокупность. Чтобы выборочная совокупность более плотно отражала генеральную, необходимо учитывать такие основы положения:

Выборка должна быть вполне представительной, т. е. иметь определенное количество наиболее типичных особей генеральной совокупности;

Выборка должна быть объективной, т. е. сформированной по принципу случайного отбора без субъективных влияний на ее состав;

выборка должна быть качественно однородной (выделенные для опыта группы должны быть аналогами по видовым, возрастным, физиологическим и другим факторам).

По объему выборки делятся на малочисленные, содержащие до 30 особей, и многочисленные.

Числовые значения признака отдельных особей называют вариантами (от латинского Varians). Изменение признаков и свойств живых существ называют варьированием. Совокупность вариант, полученных при наблюдении (исследовании) без определенной систематики называют первичным (сырым) рядом. Расстановка вариант в порядке возрастания (или убывания) называется ранжированием (ранжированный ряд). Группа чисел, сгруппированная в классы в зависимости от величины изучаемого признака, называется вариационным рядом.

Существующие между биологическими признаками связи, при которых определенному значению одного признака соответствует несколько значений другого признака, варьирующей около своей средней величины, называется корреляцией.

Биологические признаки, если они выражаются при помощи счета или меры, приобретают значение математических величин: средняя арифметическая, средняя квадратическая, коэффициент изменчивости, коэффициент корреляции и ряд других. Результаты измерений признаков, как и их особенностей варьирования, взаимосвязи и наследуемости обозначается в математических работах разными символами (таблица 1).

Таблица 1

Символы

Название символа

Принятые в данной работе

В других работах по руководству по биометрии

Дата, варианта (числовое значение признака)

Число особей генеральной совокупности

Число особей выборки

Продолжение таблицы 1

Максимальное и минимальное значение признака

Лимит, размах изменчивости

Величина классового промежутка

Частота (число вариант в классе)

Числовое значение модального класса

Отклонение классов от модального (условного, среднего)

Поправка к условной средней

Средняя арифметическая генеральной совокупности

Средняя арифметическая выборки

∑(V - M)2, S, G, SQ

Дисперсия (сумма квадратов центральных отклонений)

Сумма квадратов условных отклонений

Сигма (среднее квадратичное отклонение)

Коэффициент вариации

Дисперсия - общая, факториальная, остаточная

Статистическая ошибка (ошибка репрезентативности)

Разность между двумя средними

Показатель достоверности

Показатель достоверности разности

Показатель достоверности Фишера (при дисперсионном анализе)

Поделиться: