Газовый термометр. Переходы из разных шкал

Газовый термометр

прибор для измерения температуры, действие которого основано на зависимости давления или объёма идеального газа от температуры. Чаще всего применяют Г. т. постоянного объёма (рис. ), который представляет собой заполненный газом баллон 1 неизменного объёма, соединённый тонкой трубкой 2 с устройством 3 для измерения давления. В таком Г. т. изменение температуры газа в баллоне пропорционально изменению давления. Г. т. измеряют температуры в интервале от Газовый термометр2К до 1300 К. Предельно достижимая точность Г. т. в зависимости от измеряемой температуры 3·10 -3 - 2·10 -2 град. Г. т. такой высокой точности - сложное устройство; при измерении им температуры учитывают: отклонения свойств газа, заполняющего прибор, от свойств идеального газа; изменения объёма баллона с изменением температуры; наличие в газе примесей, особенно конденсирующихся; сорбцию (См. Сорбция) и десорбцию газа стенками баллона; диффузию (См. Диффузия) газа сквозь стенки, а также распределение температуры вдоль соединительной трубки.

Температурная шкала Г. т. совпадает С термодинамической температурной шкалой, и Г. т. применяется в качестве первичного термометрического прибора (см. Температурные шкалы). При помощи Г. т. определены температуры постоянных точек (реперных точек) Международной практической температурной шкалы (См. Международная практическая температурная шкала).

Лит.: Попов М. М., Термометрия и калориметрия, 2 изд., М., 1954.

Д. Н. Астров.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Газовый термометр" в других словарях:

    Прибор для измерения темп ры Т, действие к рого основано на зависимости давления р или объёма V идеального газа от темп ры: pV RT (R газовая постоянная). На измерениях темп ры Г. т. построены совр. температурные шкалы. Г. т. применяется как… … Физическая энциклопедия

    Газовый термометр прибор для измерения температуры, основанный на законе Шарля. Принцип работы В конце XVIII в. Шарль установил, что одинаковое нагревание любого газа приводит к одинаковому повышению давления, если при этом объём… … Википедия

    Прибор для измерения температуры, действие которого основано на зависимости давления или объема газа от температуры. Заполненный гелием, азотом или водородом баллон, соединенный при помощи капилляра с манометром, помещают в среду, температуру… … Большой Энциклопедический словарь

    газовый термометр - — Тематики нефтегазовая промышленность EN gas thermometer … Справочник технического переводчика

    ГАЗОВЫЙ ТЕРМОМЕТР - прибор для измерения температуры, действие которого основано на зависимости давления или объема газа от температуры. Чаще всего применяют газовый термометр постоянного объема (рис. Г 4), в котором изменение температуры газа в баллоне… … Металлургический словарь

    газовый термометр - dujinis termometras statusas T sritis Standartizacija ir metrologija apibrėžtis Termometras, kurio veikimas pagrįstas idealiųjų dujų slėgio arba tūrio priklausomybe nuo temperatūros. atitikmenys: angl. gas thermometer; gas expansion thermometer… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    газовый термометр - dujinis termometras statusas T sritis fizika atitikmenys: angl. gas thermometer; gas expansion thermometer vok. Gasthermometer, n rus. газовый термометр, m; газонаполненный термометр, m pranc. thermomètre à gaz, m … Fizikos terminų žodynas

    Прибор для измерения температуры, действие которого основано на зависимости давления или объёма газа от температуры. Заполненный гелием, азотом или водородом баллон, соединённый при помощи капилляра с манометром, помещают в среду, температуру… … Энциклопедический словарь

    Газовый термометр - прибор для измерения температуры, действие которого основано на зависимости давления или объема газа от температуры. Чаще всего применяют газовый термометр постоянного объема, в котором изменение температуры газа в баллоне пропорционально… … Энциклопедический словарь по металлургии

    Прибор для измерения темп ры, действие к рого осн. на зависимости давления или объёма идеального газа от темп ры. Чаще всего применяют Г. т. пост. объёма (см. рис. при ст. Термометр), в к ром изменение темп ры газа в баллоне пропорционально… … Большой энциклопедический политехнический словарь

Чтобы избавиться от указанной трудности, рассмотрим случай, когда термометрическим веществом служит газ. Ясно, что использовать его точно таким же способом, как жидкость, невозможно. Газ целиком заполняет весь содержащий его сосуд. Он не образует свободной поверхности или поверхности раздела. Его объем равен объему сосуда, в котором он находится. Однако при увеличении степени нагретости газ будет расширяться, т. е. увеличивать свой объем, если сосуд имеет упругие стенки, так что давление газа может оставаться постоянным. Наоборот, если объем сохраняется постоянным, то давление газа растет с увеличением степени нагретости. Такие эмпирические наблюдения, выполненные французскими физиками Ж. А. Ц. Шарлем (1787) Ж. Л. Гей-Люссаком (1802), стали основой газовых законов, которые мы обсудим в следующей главе. Сейчас мы просто констатируем, что давление газа при постоянном объеме увеличивается при повышении температуры.

В приборе, изображенном на рис. 2.3, на стеклянной трубке выгравирована линия (указанная стрелкой); она определяет объем газа, давление которого меняется с изменением температуры окружающей жидкости. Наблюдаемой термометрической величиной является давление, соответствующее данному объему при различных температурах, т. е. давление, которое требуется для поддержания мениска (границы раздела газ - жидкость) на выгравированной отметке. Давление измеряется весом столба жидкости в манометре, представляющем собой U-образную трубку, наполненную жидкостью. (Подробнее об измерении давления с помощью манометров говорится в приложении I.) На рис. 2.3 газовый термометр изображен только схематично. В действительности газовый термометр - это чрезвычайно сложно устроенный и сложный в обращении прибор. Нужно учесть изменение объема самой колбы при изменении температуры, вклад, вносимый в общее давление парами жидкости, используемой для определения объема, изменение плотности жидкости с температурой и т. д.

Рис. 2.3. Газовый термометр с постоянным объемом. Точный (хотя и громоздкий) прибор, с помощью которого можно определять абсолютную температуру.

Тем не менее, несмотря на практические сложности, принцип остается простым.

Ясно, что давление, показываемое манометром, будет выше, когда резервуар содержит кипящую воду, чем когда он содержит смесь воды со льдом. Ясно также, что можно произвольно определить отношение температур через отношение давлений:

где индексы s и i означают точку кипения и точку замерзания воды (от английских слов steam - «пар» и ice - «лед»). Если определять это отношение для различных газов, скажем для гелия, азота, аргона и метана, начиная каждый раз с давления, примерно равного атмосферному в точке замерзания воды, т. е. p = 760 ммрт.ст. при то мы получим примерно одно и то же значение независимо от используемого в термометре газа. Это постоянство убеждает нас в том, что определение отношения температур почти не зависит от конкретного выбора термометрического вещества, по крайней мере для этих нескольких газов.

Теперь примем, что можно изменять количество газа в колбе, так что давление в точке замерзания может иметь любое наперед заданное значение. Мы обнаружим, что отношение давлений в точке кипения и в точке замерзания, будет в какой-то степени зависеть от количества газа в колбе, т. е. от давления в точке замерзания. Затратив достаточно много времени, мы найдем закономерность, установленную рядом добросовестных исследователей, а именно оказывается, что с уменьшением начального давления отношение давлений для различных газов сходится к одному и тому же значению. Построив зависимости этого отношения от давления (которое определяется количеством газа в колбе) для различных газов, мы получим график, представленный на рис. 2.4.

При стремлении к нулю, т. е. при экстраполяции значений к вертикальной оси, для всех газов получается точно одно и то же предельное значение равное 1,36609 ± 0,00004. Это обстоятельство, которое подтверждается для всех исследованных газов, означает, что отношение температур имеет одно и то же значение независимо от химического состава газа. Таким образом, теперь мы можем определить температурную шкалу, воспользовавшись условием, что для двух температур имеет место соотношение

Это соотношение полностью не определяет шкалу, поскольку мы имеем две неизвестные величины и только одно соотношение между ними. Введем также условие

Это условие устанавливает такую же величину градуса, как в шкале Цельсия, в которой Решив совместно уравнения (2) и (3), нетрудно найти, что .

Для любой другой температуры соответствующей давлению можно написать

Другими словами, чтобы найти температуру тела в газовой термометрической шкале, нужно определить давление p, газа данного объема, которое установится после того, как газ будет находиться в контакте с телом в течение времени, достаточного для достижения теплового равновесия (практически это означает, что давление должно перестать меняться во времени).

Рис. 2.4. Результаты измерений, выполненных с помощью газового термометра с постоянным объемом. В пределе очень низкого давления (плотности) все газы дают одно и то же экстраполированное значение отношения

Кроме того, нужно определить давление р, того же самого количества газа, заключенного в том же объеме и находящегося в тепловом равновесии со смесью льда и воды. Температуру Т тогда можно найти, умножив отношение давлений на 273,16. Чтобы иметь точный результат, необходимо взять предельное значение этого отношения при уменьшении количества газа в данном объеме.

Газовый термометр

Газовый термометр – прибор для измерения температуры, действие которого основано на зависимости давления или объема идеального газа от температуры. Чаще всего применяют газовый термометр постоянного объема, в котором изменение температуры газа в баллоне пропорционально изменению давления. Температурная шкала газового термометра совпадает с термодинамической температурной шкалой. Газовый термометр применяют для измерения температур в пределах до 1300 К (Кельвина).

Из книги Все обо всем. Том 1 автора Ликум Аркадий

Кто изобрел термометр? Задавались ли вы когда-нибудь вопросом: «Интересно, насколько это горячо?» Или: «Интересно, насколько это холодно?» Если вы интересуетесь теплотой, то представите себе круг вопросов, связанных с этим явлением, которые хотят прояснить ученые! Но

Из книги Большая Советская Энциклопедия (БЕ) автора БСЭ

Из книги Большая Советская Энциклопедия (ГА) автора БСЭ

Из книги Большая Советская Энциклопедия (ВО) автора БСЭ

Из книги Большая Советская Энциклопедия (МЕ) автора БСЭ

Из книги Большая Советская Энциклопедия (ТЕ) автора БСЭ

Из книги Все обо всем. Том 4 автора Ликум Аркадий

Из книги Большая энциклопедия техники автора Коллектив авторов

Из книги Кто есть кто в мире открытий и изобретений автора Ситников Виталий Павлович

Из книги автора

Из книги автора

Из книги автора

Бывает ли термометр без ртути? Мы настолько привыкли к тому, что термометры состоят из тоненькой трубки, заполненной ртутью, что редко задумываемся о том, зачем нужна эта ртуть в этой трубке, то есть как этот прибор работает. Термометр, или градусник, - это просто прибор

Из книги автора

Жидкостный термометр Жидкостный термометр – простейший прибор, применяемый весьма широко практически во всех отраслях хозяйственного комплекса России, в медицинских учреждениях, в быту для измерений температуры воздуха в помещениях (в том числе в производственных,

Из книги автора

Ртутный термометр Ртутный термометр – прибор, представляющий собой жидкостный термометр, предназначенный для измерения температуры в диапазоне 35-750 °C.Для высокотемпературных ртутных термометров характерно заполнение пространства над ртутью азотом под давлением,

Из книги автора

Термометр сопротивления Термометры сопротивления производятся из чистых металлов и из металлов полупроводникового ряда. Термометры сопротивления разработаны для измерений, сформированных на характеристиках проводников и полупроводников, показывающих возможность

Из книги автора

Кто изобрел термометр? Задавались ли вы когда-нибудь вопросом: «Интересно, насколько это горячо?» Или: «Интересно, насколько это холодно?» Если вы интересуетесь теплотой, то представьте себе круг вопросов, связанных с этим явлением, которые хотят прояснить ученые! Но

Вы находитесь в информационном каталоге нашего сайта, где представлена техническая информация общего характера. Для знакомства и поиска необходимой продукции перейдите на главную страницу или нажмите на данную ссылку для перехода в раздел термометры .

В общем случае, Термометр - устройство для измерения текущей температуры. Изобретателем термометра считают Галилея: в его собственных сочинениях нет описания этого прибора, но известно, что уже в 1597 г. он создал некий прибор, напоминающий термометр. Схема прообраза термометра была следующей: это был сосуд с трубкой, содержащей воздух, отделенный от атмосферы столбиком воды; он изменял свои показания и от изменения температуры, и от изменения атмосферного давления. В 18 веке воздушный термометр был усовершенствован. Современную форму термометру придал ученый Фаренгейт, который описал свой способ изготовления термометра в 1723 г. Первоначально свои трубки он наполнял спиртом и лишь в конце исследований перешел к ртути. Окончательно постоянные точки тающего льда и кипящей воды установил шведский физик Цельсий в 1742 г. Сохранившиеся экземпляры термометров Фаренгейта и Цельсия отличаются тщательностью исполнения.
Существует огромное количество видов термометров - электронные термометры, цифровые, термометры сопротивления, биметаллические термометры, инфракрасные термометры (ик термометры), дистанционные термометры, электроконтактные термометры. И, конечно же, наиболее популярные - спиртовые и ртутные термометры. Помимо непосредственно термометров в продаже широко представлены оправы к термометрам, манометрические термометры (термоманометры), портативные пирометры, гигрометры термометры, термометры барометры, тонометры термометры, термопары и другое оборудование.

Вопрос, где купить термометр, сейчас практически не стоит. На рынке представлен широчайший спектр термометров различного назначения, в том числе и бытовых: уличные термометры для любых окон (и деревянных, и пластиковых), комнатные термометры для дома и офиса, термометры для бань и саун. Можно купить термометры для воды, для чая, даже для вина и пива, для аквариума, специальные термометры для почвы, для инкубаторов, фасадные и автомобильные термометры. Существуют термометры для холодильников, морозильных камер и погребов. Словом, найдётся всё! От вида термометра существенно зависит его цена. Диапазон цен также широк, как и ассортимент видов термометров. Многие компании занимаются оптовой и розничной продажей термометров российских и иностранных производителей, существуют специализированные магазины и интернет-магазины, реализующие данные приборы и способные удовлетворить потребность в приборах практически любого вида этого типа. Наиболее популярно производство и продажа простых моделей измерительного оборудования. Цены на такие приборы более чем доступны. Широкий ассортимент контрольно-измерительной температурной техники и комплексные решения в области метрологии предлагаются теперь не только в Москве, но во многих крупных городах России.

Установка термометра, как правило, технологически не сложна. Но не забывайте, что надёжное и долговечное крепление термометра гарантирует только выполненная по всем правилам установка, не стоит этим пренебрегать. Помните также, что термометр - прибор инерционный, и время установления его показаний составляет 10 - 20 минут, в зависимости от требуемой точности. Поэтому не следует ждать, что термометр изменит свои показания сразу, как только вы его вынете из упаковки или установите.

  • Жидкостные
    Жидкостный термометр - это, как правило, термометр из стекла (стеклянный термометр), увидеть который можно практически везде. Жидкостные термометры бывают как бытовыми, так и техническими (термометр ттж - термометр технический жидкостный). Жидкостный термометр работает по простой схеме - объем жидкости внутри термометра изменяется при изменении температуры вокруг нее. Жидкость, находящаяся в термометре, занимает меньший объем капилляра при низкой температуре, а при высокой температуре жидкость в столбике термометра начинает увеличиваться в объеме, тем самым будет расширяться, и подниматься вверх. Обычно в жидкостных термометрах применяется либо спирт, либо ртуть. Температура, измеряемая жидкостным термометром, преобразуется в линейное перемещение жидкости, шкала наносится прямо на поверхность капилляра или прикрепляется к нему снаружи. Чувствительность термометра зависит от разности коэффициентов объемного расширения термометрической жидкости и стекла, от объема резервуара и диаметра капилляра. Чувствительность термометра обычно лежит в пределах 0,4…5 мм/С (для некоторых специальных термометров 100…200 мм/°С). Технические жидкостные стеклянные термометры применяют для измерения температур от -30 до 600°С. При монтаже стеклянного технического жидкостного термометра его часто помещают в защитную металлическую оправу для изоляции прибора от измеряемой среды. Для уменьшения инерционности измерения в кольцевой зазор между термометром и стенкой оправы при измерении температуры до 150°С заливают машинное масло; при измерении более высоких температур в зазор насыпают медные опилки. Как любые другие точные приборы, промышленные технические термометры требуют проведения регулярной поверки.
  • Манометрические
    Действие манометрических термометров основано на изменении давления газа, пара или жидкости в замкнутом объеме при изменении температуры. Манометрический термометр состоит из термобаллона, гибкого капилляра и собственно манометра. В зависимости от заполняющего вещества манометрические термометры делятся на газовые (термометр ТПГ, термометр ТДГ и др.), парожидкостные (термометр ТПП) и жидкостные (термометр ТПЖ, термометр ТДЖ и др.). Область измерения температур манометрическими термометрами колеблется в диапазоне от -60 до +600°С.
    Термобаллон манометрического термометра помещают в измеряемую среду. При нагреве термобаллона внутри замкнутого объема увеличивается давление, которое измеряется манометром. Шкала манометра градуируется в единицах температуры. Капилляр обычно представляет собой латунную трубку с внутренним диаметром в доли миллиметра. Это позволяет удалить манометр от места установки термобаллона на расстояние до 40 м. Капилляр по всей длине защищен оболочкой из стальной ленты.
    Манометрические термометры могут применяться во взрывоопасных помещениях. При необходимости передачи результатов измерений на расстояние более 40 м манометрические термометры снабжают промежуточными преобразователями с унифицированными выходными пневматическими или электрическими сигналами, речь идет о так называемых дистанционных термометрах.
    Наиболее уязвимы в конструкции манометрических термометров являются места присоёдинения капилляра к термобаллону и манометру. Поэтому устанавливать и обслуживать такие приборы должны специально обученные специалисты.
  • Сопротивления
    Действие термометров сопротивления основано на свойстве тел изменять электрическое сопротивление при изменении температуры. В металлических термометрах сопротивление с возрастанием температуры увеличивается практически линейно. В полупроводниковых термометрах сопротивления оно наоборот, уменьшается.
    Металлические термометры сопротивления изготовляют из тонкой медной или платиновой проволоки, помещенной в электроизоляционный корпус. Зависимость электрического со противления от температуры (для медных термометров диапазон от -50 до +180 С, для платиновых диапазон от -200 до +750 С) весьма стабильна и воспроизводима. Это обеспечивает взаимозаменяемость термометров сопротивления. Для защиты термометров сопротивления от воздействия измеряемой среды применяют защитные чехлы. Приборостроительная промышленность выпускает много модификаций защитных чехлов, рассчитанных на эксплуатацию термометров при различном давлении (от атмосферного до 500 105 Па), различной агрессивности измеряемой среды, обладающих разной инерционностью (от 40 с до 4 мин) и глубиной погружения (от 70 до 2000 мм).
    Полупроводниковые термометры сопротивления (термисторы) для измерений в промышленности применяют редко, хотя их чувствительность гораздо выше, чем проволочных термометров сопротивления. Это объясняется тем, что градуированные характеристики термисторов значительно отличаются друг от друга, что затрудняет их взаимозаменяемость.
    Термометры сопротивления представляют собой первичные преобразователи с удобным для дистанционной передачи сигналом - электрическим сопротивлением, для измерения такого сигнала обычно применяют автоматические уравновешенные мосты. При необходимости выходной сигнал термометра сопротивления может быть преобразован в унифицированный сигнал. Для этого в измерительную цепь включают промежуточный преобразователь. В этом случае измерительным будет прибор для измерения постоянного тока.
  • Термоэлектрические
    Принцип действия термоэлектрических термометров основан на свойстве двух разнородных проводников создавать термоэлектродвижущую силу при нагревании места их соединения - спая. Проводники в этом случае называются термоэлектродами, а все устройство - термопарой. Величина термоэлектродвижущей силы термопары зависит от материала термоэлектродов и разности температур горячего спая и холодных спаев. Поэтому при измерении температуры горячего спая температуру холодных спаев стабилизируют или вводят поправку на ее изменение.
    В промышленных условиях стабилизация температуры холодных спаев термопары затруднительна, поэтому обычно пользуются вторым способом - автоматически вводят поправку на температуру холодных спаев. Для этого применяют неуравновешенный мост, включаемый последовательно с термопарой. В одно плечо такого моста включен медный резистор, расположенный около холодных спаев. При изменении температуры холодных спаев термопары изменяется сопротивление резистора и выходное напряжение неуравновешенного моста. Мост подбирают таким образом, чтобы изменение напряжения было равно по величине и противоположно по знаку, изменению термоэлектродвижущей силы термопары вследствие колебаний температуры холодных спаев.
    Термопары являются первичными преобразователями температуры в термоэлектродвижущую силу - сигнал, удобный для дистанционной передачи. Поэтому в измерительную цепь за термопарой может быть сразу включен измерительный прибор для измерения термоэлектродвижущей силы термопары. Обычно применяют автоматические потенциометры.
    Если термоэлектродвижущую силу термопары преобразуют в унифицированный сигнал промежуточным преобразователем, то компенсация температуры холодных спаев производится неуравновешенным мостом, который входит в состав преобразователя.
    Медный резистор размещают в потенциометре или промежуточном преобразователе. Следовательно, там же должны находиться и холодные спаи термопары. В этом случае длина термопары должна быть равна расстоянию от места измерения температуры до места установки прибора. Такое условие практически невыполнимо, так как термоэлектроды термопар (жесткая проволока) неудобны для монтажа. Поэтому для соединения термопары с прибором применяют специальные соединительные провода, подобные по термоэлектрическим свойствам термоэлектродам термопар. Такие провода называются компенсационными. С их помощью холодные спаи термопары переносятся к измерительному прибору или преобразователю.
    В промышленности применяют различные термопары, термоэлектроды которых изготовлены как из чистых металлов (платина), так и из сплавов хрома и никеля (хромель), меди и никеля (копель), алюминия и никеля (алюмель), платины и родия (платинородий), вольфрама и рения (вольфрамрений). Материалы термоэлектродов определяют предельное значение измеряемой температуры. Наиболее распространенные термоэлектродные пары образуют стандартные термопары: хромель-копель (предельная температура 600°С), хромель-алюмель (предельная температура 1000°С), платинородий-платина (предельная температура 1600°С) и вольфрамрений с 5% рения- вольфрамрений с 20% рения (предельная температура 2200°С). Промышленные термопары отличаются высокой стабильностью характеристик, что позволяет заменять их без какой-либо переналадки остальных элементов измерительной цепи.
    Термопары, как и термометры сопротивления, устанавливают в защитных чехлах, на которых указан тип термопары. Для высокотемпературных термопар применяют защитные чехлы из теплостойких материалов: фарфора, оксида алюминия, карбида кремния и т. п.
  • Электронные
    Если нужно контролировать температуру, скажем, в подвале дома, на чердаке или в любом подсобном помещении, обычный ртутный или спиртовой термометр вряд ли подойдет. Довольно неудобно периодически выходить из комнаты, чтобы взглянуть на его шкалу.
    Более пригоден в подобных, случаях электронный термометр, позволяющий измерять температуру дистанционно - на расстояниях в сотни метров. Причем в контролируемом помещении будет располагаться лишь миниатюрный термочувствительный датчик, а в комнате на видном месте - стрелочный индикатор, по шкале которого и отсчитывают температуру. Соединительная линия между датчиком и устройством индикации может быть выполнена либо экранированным проводом, либо двухпроводным электрическим шнуром. Конечно, электронный термометр - не новинка современной электроники. Но в большинстве случаев термочувствительным элементом в ранних версиях таких термометров был терморезистор, обладающий нелинейной зависимостью сопротивления от температуры окружающей среды. А это менее удобно, поскольку стрелочный индикатор нужно было снабжать специальной нелинейной шкалой, получаемой во время, градуировки прибора с помощью образцового термометра.
    Сейчас в электронных термометрах в качестве термочувствительного элемента применяется кремниевый диод, зависимость прямого напряжения (т. е. падения напряжения на диоде при протекании через него прямого тока - от анода к катоду) которого линейна в широком диапазоне изменения температуры окружающей среды. В этом варианте отпадает необходимость в специальной градуировке шкалы стрелочного индикатора.
    Принцип действия электронного термометра можно понять, вспомнив известную мостовую схему измерения, образованную четырьмя резисторами, с включенным в одну диагональ стрелочным индикатором и поданным на другую диагональ питающим напряжением. При изменении сопротивления одного из резисторов, через стрелочный индикатор начинает протекать ток.
    Электронные термометры способны измерять температуру в диапазоне от -50 до 100 С Питается электронный термометр стабильным напряжением, которое получается благодаря включению в цепь батареи.
  • Электроконтактные
    Электроконтактные термометры предназначены для сигнализации о заданной температуре и для включения или выключения соответствующего оборудования при достижении этой температуры. Электроконтактные термометры могут работать в системах для поддержания постоянной (заданной) температуры от -35 до +300°С в различных промышленных, лабораторных, энергетических и других установках.
    Изготавливаются данные приборы по техническим условиям предприятия. В общем случае электроконтактные термометры конструктивно подразделяются на 2 вида:
    термометры с переменной (устанавливаемой) температурой контактирования, термометры с постоянной (заданной) температурой контактирования (так называемые термоконтакторы).
    Электроконтактные термометры типа ТПК с переменным контактом изготавливаются с вложенной шкалой. Шкальная пластина из стекла молочного цвета с нанесенными на нее делениями шкалы и оцифровкой позволяет проводить визуальный контроль температурных режимов в установках.
    Термоконтакторы изготавливаются из массивной капиллярной трубки, имеют один или два рабочих контакта, т.е. одну или две фиксированные температуры контактирования. Применяются при погружении в измеряемую среду до соединительного (нижнего) контакта.
    Термометры имеют магнитное устройство, с помощью которого рабочая точка контактирования изменяется в диа¬пазоне всего интервала температур.
    Электроконтактные термометры и термоконтакторы работают в цепях постоянного и переменного тока в безыскровом режиме. Допускаемая электрическая на¬грузка на контактах этих приборов не более 1 Вт при напряжении до 220 В и силе тока 0,04 А. Для включения в электроцепь термокон¬такторы снабжены припаянными гибкими проводниками. Термометры подключаются к цепи с помощью контактов под съемной крышкой.
  • Цифровые
    Цифровые, как и любые другие термометры, - это приборы, предназначенные для измерения температуры. Достоинством цифровых термометров является то, что они обладают малыми размерами, широким диапазоном измеряемой температуры в зависимости от используемых внешних датчиков температуры. Внешние датчики температуры могут быть как термопары различных типов, так и термометры сопротивления, иметь различные формы и области применения. Например, имеются внешние датчики температуры для газообразных, жидких и твёрдых тел. Термометры цифровые представляют собой высокоточные, высокоскоростные приборы. В основе цифрового термометра лежит аналого-цифровой преобразователь, работающий по принципу модуляции. Параметры термометра в смысле погрешности измерений всецело определяются датчиками. Цифровые термометры могут применяться в бытовых целях и для контроля технологических процессов в строительстве, в том числе дорожном, а также в строительной индустрии, сельском хозяйстве, деревообрабатывающей, пищевой и других отраслях промышленности. Цифровые термометры обладают памятью измерений и могут обеспечивать несколько режимов наблюдения.
  • Конденсационные
    Конденсационные термометры реализуют зависимость упругости насыщенных паров низкокипящей жидкости от температуры. Поскольку эти зависимости для используемых жидкостей (хлористый метил, этиловый эфир, хлористый этил, ацетон и др.) нелинейные, следовательно, и шкалы термометров неравномерны. Однако эти приборы обладают более высокой чувствительностью, чем, например, газовые жидкостные. В конденсационных термометрах измеряют давление насыщенного пара над поверхностью жидкости, неполно заполняющей термосистему, т.к. изменение давления происходит непропорционально - приборы имеют неравномерные шкалы. Пределы измерений от -25 до 300 С.
  • Газовые
    В основу принципа действия газового термометра положена зависимость между температурой и давлением термометрического (рабочего) вещества, лишенного возможности свободно расширяться при нагревании. Газовые манометрические термометры основаны на зависимости температуры и давления газа, заключенного в герметически замкнутой термосистеме. В газовых термометрах (обычно постоянного объема) изменение температуры прямо пропорционально давлению в диапазоне измеряемых температур от - 120 до 600 °С. На измерении температуры газовыми термометрами построены современные температурные шкалы. Процесс измерения заключается в приведении баллона с газом в состояние теплового равновесия с теплом, температуру которого измеряют, и в восстановлении первоначального объема газа. Газовый термометр высокой точности - довольно сложное устройство. Необходимо учитывать не идеальность газа, тепловое расширение баллона и соединительной трубки, изменение состава газа внутри баллона (сорбцию и диффузию газов), изменение температуры вдоль соединительной трубки.
    Достоинства: шкала прибора практически равномерна.
    Недостатки: сравнительно большая инерционность и большие размеры термобаллона.
  • Спиртовые
    Термометр спиртовой относится к термометрам расширения и является подвидом жидкостного термометра. Принцип действия термометра спиртового основан на изменении объема жидкостей и твердых тел при измерении температуры. Таким образом, в данном термометре используется способность жидкости, заключенной в стеклянную колбочку, к расширению и сжатию. Обычно стеклянная капиллярная трубочка заканчивается шаровидным расширением, которое служит резервуаром для жидкости. Чувствительность такого термометра находится в обратной зависимости от площади поперечного сечения капилляра и в прямой - от объема резервуара и от разности коэффициентов расширения данной жидкости и стекла. Поэтому чувствительные термометры имеют большие резервуары и тонкие трубки, а используемые в них жидкости с увеличением температуры расширяются значительно быстрее, чем стекло. Этиловый спирт применяют в термометрах, предназначенных для измерения низких температур. Точность проверенного стандартного стеклянного спиртового термометра ± 0,05° С. Главная причина погрешности связана с постепенными необратимыми изменениями упругих свойств стекла. Они приводят к уменьшению объема стекла и повышению точки отсчета. Кроме того, ошибки могут возникать в результате неправильного считывания показаний или из-за размещения термометра в месте, где температура не соответствует истинной температуре воздуха. Дополнительные ошибки могут возникать из-за сил сцепления между спиртом и стеклянными стенками трубки, поэтому при быстром понижении температуры часть жидкости удерживается на стенках. Кроме того, спирт на свету уменьшает свой объем.
  • Биметаллические
    Их строение основано на различии теплового расширения веществ, из которых изготовлены пластины применяемых чувствительных элементов. Биметаллические термометры используются для измерения температуры в жидких и газообразных средах, в том числе на морских и речных судах, атомных электростанциях.
    В общем случае, биметаллический термометр состоит из двух тонких лент металла, например медной и железной, которые при нагревании расширяются неодинаково. Плоские поверхности лент плотно прилегают одна к другой. Такая биметаллическая система скручена в спираль, один из концов этой спирали жестко закрепляется. При нагревании или охлаждении спирали ленты, изготовленные из разных металлов, расширяются или сжимаются по-разному. Следовательно, спираль или раскручивается, или туже скручивается. По указателю, который прикреплен к свободному концу спирали, можно судить о величине изменений. Примером биметаллического термометра может служить комнатный термометр с круглым циферблатом.
  • Кварцевые
    Кварцевые термометры основаны на температурной зависимости резонансной частоты пьезокварца. Датчик кварцевого термометра представляет собой кристаллический резонатор, выполненный в виде тонкого диска или линзы, помещенный в герметизирующий кожух, заполненный для лучшей теплопроводности гелием при давлении около 0,1 мм РТ. Ст. (диаметр кожуха составляет 7-10 мм). В центральной части линзы или диска нанесены золотые электроды возбуждения, а держатели (выводы)располагаются на периферии.
    Точность и воспроизводимость показаний определяются главным образом изменением частоты и добротностью резонатора, понижающейся при эксплуатации вследствие развития микротрещин от периодического нагрева и охлаждения.
    Измеряемая схема кварцевого термометра состоит из датчика, включенного в цепь положительной обратной связи усилителя, и частотомера. Существенным недостатком кварцевых термометров является их инерционность, составляющая несколько секунд, и нестабильность работы при температурах выше 100 С из-за возрастающей невоспроизводимости.

Уравнение состояния идеального газа

позволяет в качестве термометрической величины взять либо p , либо V , которые могут измеряться с большой точностью.

Как показывает эксперимент, достаточно разреженные газы очень близки к идеальному. Поэтому их можно непосредственно взять в качестве термометрического тела.

Таким путём приходят к идеально-газовой шкале температур. Идеально-газовая температура – это температура, отсчитываемая по газовому термометру, наполненному разреженным газом. Преимущество идеально-газовой шкалы температур перед всеми прочими эмпирическими температурными шкалами состоит в том, что, как показывает опыт, температура Т , определённая по формуле (4), очень слабо зависит от химической природы газа, которым наполнен резервуар газового термометра. Показания различных газовых термометров при измерении температуры одного и того же тела очень мало отличаются друг от друга.

На практике газовый термометр обычно реализуют следующим образом: объём газа V поддерживается постоянным, тогда индикатором температуры служит измеряемое давление p .

Закон Шарля для реперных точек в этом случае будет иметь вид:

где p 1 – давление некоторой массы газа, близкого к идеальному, при температуре таяния льда Т 1 ; р 2 – давление при температуре кипения воды Т 2 .

Градус температуры, по определению, можно выбрать таким, чтобы разница между указанными температурами была равна 100, т.е.

Опытным путём установлено, что давление р 2 в 1,3661 раза больше, чем р 1 . Следовательно, для вычисления Т 2 и Т 1 имеем два уравнения: К и . Решение их даёт Т 1 =273,15 К; Т 2 =373,15 К.

Для определения температуры какого-либо тела его приводят в контакт с газовым термометром и после установления теплового равновесия измеряют давление р газа в термометре. При этом температура тела определится по формуле

Отсюда следует, что при Т =0 р =0. Температуру, соответствующую нулевому давлению идеального газа, назвали абсолютным нулём, а температуру, отсчитываемую от абсолютного нуля, – абсолютной температурой. Здесь понятие абсолютного нуля температуры введено на основе экстраполяции. В реальности по мере приближения к абсолютному нулю наблюдаются всё более и более заметные отступления от законов идеальных газов, газы начинают конденсироваться. Строгое доказательство существования абсолютного нуля температуры основано на втором начале термодинамики.



Шкала Кельвина

(абсолютная термодинамическая шкала температур)

В СИ условились шкалу температур определять по одной реперной точке, в качестве которой взята тройная точка воды. В так называемой абсолютной термодинамической шкале температур или шкале Кельвина принимается по определению, что температура этой точки равна точно 273,16 К.

Такой выбор численного значения сделан для того, чтобы промежуток между нормальными точками плавления льда и кипения воды с максимально возможной точностью составлял 100 К, если пользоваться газовым термометром с идеальным газом. Тем самым устанавливается преемственность шкалы Кельвина с ранее применявшейся шкалой с двумя реперными точками. Измерения показали, что температуры нормальных точек плавления льда и кипения воды в описанной шкале равны приближённо 273,15 и 373,15 К соответственно.

Определённая таким образом шкала температур не зависит от индивидуальных свойств термометрического вещества.

Абсолютная термодинамическая температура Т , отсчитываемая по этой шкале, есть мера интенсивности хаотического движения молекул и является монотонной функцией внутренней энергии. Для идеального газа непосредственно связана с внутренней энергией ().

Название «термодинамическая» она получила потому, что совершенно независимо может быть выведена из чисто термодинамических расчётов на основе второго начала термодинамики.

Абсолютная термодинамическая шкала является основной температурной шкалой в физике. В области температур, где пригоден газовый термометр, эта шкала практически не отличается от идеально-газовой шкалы температур.

Температура по шкале Цельсия (t , ) связана с Т (в К) равенством

Причём К.

Виды термометров

Температура не может быть измерена непосредственно. Поэтому действие термометров основано на различных физических явлениях, зависящих от температуры: на тепловом расширении жидкостей, газов и твёрдых тел, изменении с температурой давления газа или насыщенных паров, электрического сопротивления, термо-э.д.с., магнитной восприимчивости и др.

Основными узлами всех приборов для измерения температуры являются чувствительный элемент, где реализуется термометрическое свойство, и связанный с ним измерительный прибор (манометр, потенциометр, измерительный мост, милливольтметр и т.д.).

Эталоном современной термометрии является газовый термометр постоянного объёма (термометрической величиной является давление). С помощью газовых термометров температуру измеряют в широком интервале: от 4 до 1000 К. Газовые термометры используются обычно как первичные приборы, по которым градуируют вторичные термометры, применяемые непосредственно в экспериментах.

Из вторичных термометров наибольшее распространение получили жидкостные термометры, термометры сопротивления и термоэлементы (термопары).

В жидкостных термометрах термометрическим телом, как правило, является ртуть или этиловый спирт. Обычно жидкостные термометры применяются в диапазоне температур от 125 до 900 К. Нижняя граница измеряемых температур определяется свойствами жидкости, верхняя – свойствами стекла капилляра.

В термометрах сопротивления термометрическим телом является металл или полупроводник, сопротивление которого изменяется с температурой. Изменение сопротивления с температурой измеряют при помощи мостовых схем (см. рис.). Термометры сопротивления из металлов применяются в интервале температур от 70 до 1300 К, из полупроводников (термисторы) – в интервале от 150 до 400 К, а углеродные – до температур жидкого гелия.
Широкое распространение в температурных измерениях получили термометры на основе термопар. Термометрическим телом здесь служат два спая разнородных металлов. Если два проводника соединить по схеме (см. рис.), то вольтметр в цепи будет регистрировать напряжение, значе-

ние которого пропорционально разности температур спаев 1 и 2. Если температуру одного из спаев поддерживать постоянной, то показания вольтметра будут зависеть только от температуры второго спая. Такие термометры особенно удобно применять в области высоких температур – порядка 700-2300 К.

При очень высокой температуре материалы плавятся и описанные виды термометров неприменимы. В этом случае в качестве термометрического тела берётся само тело, температуру которого необходимо измерить, а в качестве термометрической величины – излучаемая телом электромагнитная энергия. По известным законам излучения делают заключение о температуре тела. Международный комитет мер и весов установил термодинамическую шкалу при температуре выше 1064 именно на основе законов излучения. Приборы, с помощью которых измеряется энергия излучения, называются пирометрами.

При очень низкой температуре (»1К) также не удается применять обычные методы измерения температур, поскольку выравнивание температур при контакте происходит очень медленно и, кроме того, обычные термометрические величины становятся непригодными (например, давление газа становится весьма малым, сопротивление практически не зависит от температуры). В этих условиях также в качестве термометрического тела берётся само тело, а в качестве термометрической величины – характеристики его свойств, например, магнитных.

Поделиться: