Функции скелетных и гладких мышц. Избранные главы из книги "современная силовая тренировка

Скелетная мускулатура является одной из основных систем человеческого организма и представляет собой активное звено двигательного аппарата.

Скелетные мышцы осуществляют движения отдельных частей тела и перемещение человека в пространстве, а также принимают активное участие в работе внутренних органов. Всего в теле человека насчитывается порядка 600 мышц.

Классификация скелетных мышц

Скелетная мускулатура состоит из волокон нескольких основных типов:

  • Медленные волокна. В них содержится большое количество белков миоглобина, связывающего кислород и являющегося своеобразным «дыхательным веществом» для мышц, аналогом гемоглобина для крови. Их называют «красными», так как они имеют темно-красный цвет. Эти волокна отвечают за поддержание позы. Переутомление в них наступает медленно из-за миоглобина и наличия митохондрий, а восстановление - быстро.
  • Быстрые волокна. Способны быстро сокращаться длительное время без утомляемости. Отсутствие утомления объясняется повышенным содержанием митохондрий и образованием АТФ при помощи окислительного фосфорилирования. Число волокон в нейромоторной единице такой мышцы меньше, чем в предыдущей.
  • Быстрые волокна с гликотическим окислением. В этих волокнах для образования АТФ используется гликолиз, в них меньше митохондрий. Мышцы с такими волокнами развиваются и сокращаются намного быстрее, но быстро утомляются. В них отсутствует белок миоглобин, в результате чего их называют «белыми».

Мышцы состоят из двигательных, или нейромоторных единиц. Часть мускулатуры, отвечающая за быстрые и точные движения, состоит из небольшого числа волокон. Мышцы, ответственные за поддержание позы, более массивны и могут содержать до нескольких тысяч таких волокон.

Основные типы мышц

В основном, все мышцы делятся на 3 типа:

  • Синергисты. Предназначены для осуществления движения только в одном направлении.
  • Антагонисты. Могут работать в разных направлениях.
  • Многофункциональные мышцы. Воздействуют более чем на один определенный сустав. Могут придавать движениям крутящий момент.

Расположение волокон в мышцах

Волокна скелетной мускулатуры могут располагаться в мышцах:

  • Параллельно растяжению. Так происходит, когда человек выполняет упражнения в быстром темпе, а уровень нагрузки при этом минимален.
  • Перпендикулярно растяжению. В этом случае используются короткие сокращения при максимальной нагрузке.

Механизмы, регулирующие силу сокращения мышц

Сила сокращения волокон мускулатуры регулируется центральной нервной системой. При этом используется два разных механизма подбора моторных единиц:

  • Для точных, координированных и тщательно рассчитанных движений во время занятий используются двигательные единицы, количество волокон в которых не превышает 30.
  • Сильные и грубые движения используют мышцы с числом волокон от 100 и выше.

Чем больше человек прикладывает мышечной силы для выполнения того или иного упражнения, тем сильнее генерируемый импульс. Благодаря этому увеличивается задействованное число мышц и производится еще большая сила приложения.

Функции скелетных мышц человека

Скелетная мускулатура входит в состав опорно-двигательной системы человека. При этом скелетные мышцы призваны выполнять следующие функции:

  • обеспечивать принятие и удержание определенной позы тела
  • перемещать тело в пространстве;
  • перемещать отдельные части человеческого тела относительно других частей;
  • выделять тепло, обеспечивая терморегуляцию организма.

Свойства скелетных мышц

Скелетная мускулатура обладает следующими физическими свойствами:

  • Возбудимость. Это состояние выражается в способности отвечать на действия раздражителей при помощи мембранного потенциала и ионной проводимости. Возбудителями могут быть медиаторы мотонейронов или миорелаксанты, которые действуют путем блокирования передачи нервного импульса. Также в лабораториях часто используются электростимуляторы.
  • Проводимость. Позволяет проводить действие вглубь и вдоль мышечного волокна согласно Т-системе.
  • Сократимость. Мышцы могут укорачиваться, а также увеличивать напряжение в условиях возбуждения.
  • Эластичность. Мышечные волокна способны развивать напряжение во время растягивания.

Тонус скелетной мускулатуры

Скелетные мышцы не могут находиться в полностью расслабленном состоянии и сохраняют определенный уровень напряжения, который называется тонусом. Тонус выражается в поддержании упругости мышц в спокойном состоянии. Он сохраняется благодаря нервным импульсам, поступающим последовательно с большими интервалами и раздражающим разные волокна.

Вместе с тем человек как высокоорганизованное существо, способен регулировать тонус по своему желанию. Например, он может полностью расслабить или напрячь мышцы, а также выбирать уровень напряжения. Для этого ему не нужно выполнять какую-либо физическую работу.

Работа скелетной мускулатуры

Основная задача скелетной мускулатуры - мышечная работа. Она полностью соответствует физическому закону А = FS, в котором определяется количество энергии, которая была затрачена на перемещение тела в определенных условиях (с использованием силы). Также существует возможность работы в изотоническом режиме, при котором сокращение мышцы происходит без нагрузки на нее.

Кроме того, выделяется изотермический режим, во время которого в условиях максимальной нагрузки мышца не укорачивается. В таком случае химическая энергия преобразуется в тепловую. При работе в естественных условиях изотермическими называются сокращения в фиксированной позе, и динамическими - в активной.

Сила и работа не остаются постоянными и эффективность занятий постепенно снижается. Такое состояние называется утомлением. Наиболее утомителен статический режим. При его использовании мышечные волокна быстрее накапливают продукты, возникающие в процессе окисления (пировиноградная, а также молочная кислота). При этом нарушается ресинтез АТФ, отвечающий за энергообеспечение сокращений мышц. Кроме того, на степень физической утомляемости влияет степень умственного напряжения во время работы. Чем она выше, тем меньше утомляются мышцы.

Виды мышц

В настоящее время различаются следующие виды мышц:

  • одноперистые, в которых мышечные пучки прикреплены с одной стороны сухожилия (такие, как сгибатели больших пальцев кистей);
  • двуперистые, в которых пучки прикрепляются с двух сторон сухожилий (такие, как длинные сгибатели больших пальцев ног);
  • многоперистые, в которых перистые группы примыкают к своим аналогам (такие, как дельтовидная мышца);
  • треугольные, в которых пучки соединяются с разных направлений (височная мышца).

Кроме того, мышцы имеют разное количество головок и могут быть:

  • двуглавыми;
  • трехглавыми;
  • четырехглавыми.

Скелетные мышцы выполняют много других функций. Например, могут обеспечить тканевое дыхание сердцу в экстренных случаях при помощи вещества оксимиоглобин (соединение кислорода и миоглобина). Поэтому развитие скелетных мышц является одной из основ спортивного и хорошего развитого тела человека, а также его здоровья.

Ключевую роль в осуществлении движения как основополагающего свойства живого организма играют мышцы. У человека мышцы составляют от 40% до 50% массы тела (Одноралов Н.И.,1965; Бегун П.И., Шукейло Ю.А.,2000; Финандо Д., Финандо С.,2001; Lockart R.D. и соавт.,1969). Мышечная система человека имеет три важнейшие функции (Финандо Д., Финандо С.,2001; Иваничев Г.А., Старосельцева Н.Г,2002):

  • первая функция - поддержание тела и внутренних органов;
  • вторая функция - движения тела в целом, его отдельных частей и внутренних органов;
  • третья функция - метаболическая.

Все мышцы человеческого организма имеют общие основные свойства , которые имеют важное значение для функционирования мышечной системы и дополняют друг друга:

1. возбудимость - способность воспринимать нервный импульс и отвечать на него;

2. сократимость - способность укорочения при получении соответствующего стимула;

3. растяжимость - способность удлиняться под воздействием внешней силы;

4. эластичность - способность возвращаться к нормальной форме после сокращения или растяжения.

Мышечная система человека представлена мышцами трех следующих типов:

1. скелетные мышцы;

2. висцеральные мышцы;

3. мышца сердца.

Главным объектом данного учебного пособия являются скелетные мышцы, связанные с движениями позвоночника и конечностей. Они предназначены для выполнения статических и динамических задач человеческого организма. Для статики они должны отвечать следующим требованиям :

1. противостоять силам гравитации с минимальной затратой энергии, обеспечивая силовой баланс между частями опорно-двигательного аппарата;

2. обеспечивать постоянство внутреннего эндоритма составляющих элементов опорно-двигательного аппарата.

Для динамики скелетные мышцы человека должны выполнять следующие функции:

  • совершать движения различными регионами позвоночника и конечностей в определенной последовательности в виде перемещения тела или его частей адекватно цели, в соответствующем объеме;
  • ограничивать распространение этого движения на соседние регионы, обеспечивать однонаправленность выполнения движения.

Скелетные мышцы - это поперечно-полосатые мышцы Общее число скелетных мышц в теле человека - более 600 (Бегун П.И., Шукейло Ю.А,2000). Каждая скелетная мышца является единым органом, обладающим сложной структурной организацией (Хабиров ФА, Хабиров Р.А.,1995; Петров К Б.,1998; Бегун П.И., Шукейло Ю А,2000; Иваничев Г.А, Старосельцева Н.Г.,2002). Всякое мышечное волокно является многоядерной цилиндрической клеткой, окруженной мембраной - сарколеммой. Мышечные клетки содержат смещенные к периферии ядра и миофибриллы.

Поперечные мембраны разделяют каждую миофибриллу на саркомеры - структурные единицы миофибрилл, обладающие способностью сокращаться. Каждая миофибрилла представляет собой цепь, составленную из филаментов. Различают толстые филаменты - темные, анизотропные, состоящие из миозина, и тонкие миофиламенты - белые, изотропные, состоящие из актина. Белки актин и миозин составляют актиномиозиновый комплекс, который обеспечивает под влиянием аденозинтрифосфорной кислоты мышечное сокращение. Каждое мышечное волокно окружает соединительно-тканная оболочка - эндомизиум, группу волокон - перимизиум, всю мышцу - эпимизиум.

Скелетные мышцы крепятся к костям посредством соединительной части мышцы - сухожилия. К вспомогательному аппарату мышц относятся фасции, синовиальные сумки, влагалища сухожилий, сесамовидные кости. Фасции - это фиброзные оболочки, покрывающие мышцы и их отдельные группы. Синовиальные сумки, содержащие синовиальную жидкость, являются внесуставными полостями, предохраняющими мышцу от повреждения, уменьшающими трение. Влагалища сухожилий предназначены для защиты сухожилий мышц от тесного прилежания к костям, что облегчает работу мышц. В толще некоторых мышц имеются сесамовидные кости, улучшающие работу мышц. Самая большая сесамовидная кость - надколенник, расположена в сухожилии четырехглавой мышцы бедра.

В поперечно-полосатой мышечной ткани выделяют три типа волокон (Сапрыкин В.П., Турбин Д.А.,1997, Макарова И Н., Епифанов В.А, 2002):

1 тип - красные, медленные;

2 тип - быстрые:

А - промежуточные, красные,

В - белые.

Мышца человека содержит и белые, и красные волокна, но в разных соотношениях. Медленные красные волокна 1 типа обладают хорошо развитой капиллярной сетью, большим количеством митохондрий и высокой активностью окислительных ферментов, что определяет их существенную аэробную выносливость при выполнении работы продолжительное время (Иваничев Г.А., Старосельцева Н.Г,2002). Быстрые красные волокна 2 типа А занимают промежуточное положение между красными медленными волокнами и белыми быстрыми волокнами. Отличительной особенностью промежуточных красных волокон, относящихся к быстрым, является их способность использовать энергию при гликолизе как по аэробному, так и по анаэробному циклам Кребса.

Быстрые красные волокна являются мало утомляемыми мышечными волокнами. Мышечные волокна белые содержат большое количество миофибрилл, благодаря которому развивается большая сила сокращения. Они относятся к быстрым волокнам 2 типа В. Быстрые мышечные волокна содержат больше гликолитических ферментов, меньше митохондрий и миоглобина, имеют незначительную сеть капилляров. Аэробная выносливость этих волокон невелика. Они легко и быстро утомляются.

Скелетные мышцы человека состоят из экстрафузальных мышечных волокон, специализируемых на сократительной функции, и интрафузальных мышечных волокон, представляющих нервно-мышечное веретено (Хабиров Ф.А., Хабиров Р.А.,1995).

Сложный аппарат обеспечения движений включает в себя афферентную и эфферентную части (Карлов В.А.,1999; Ходос X.-Б.Г.,2001).

Красноярова Н.А.

Анатомо-физиологические особенности скелетных мышц и тесты для их исследования

Мышцы образуют активную часть опорно-двигательного аппарата. Они прикрепляются к костям скелета, действуют на костные рычаги, приво­дят их в движение. Поэтому их на­зывают также скелетными мышцами.

Скелетные мышцы построены из поперечно-полосатой мышечной тка­ни. Они выполняют следующие функ­ции: 1) удерживают положение тела и его частей в пространстве; 2) обес­печивают передвижение тела (бег, ходьба и другие виды движений);

3) перемещают части тела друг от­носительно друга; 4) осуществляют дыхательные и глотательные движе­ния; 5) участвуют в артикуляции речи и формировании мимики; 6) вы­рабатывают тепло; 7) преобразуют химическую энергию в механическую.

В теле человека насчитывают око­ло 600 мышц. Общая масса скелетной мускулатуры у новорожденных детей в среднем составляет 22% от массы тела, в 17 – 18 лет она достигает 35 – 40%. У пожилых и старых людей относительная масса скелетных мышц уменьшается до 25 – 30%. У тренированных спортсменов мышцы могут составлять до 50% от всей массы тела.

Основные функциональные свой­ства мышц: 1) возбудимость – спо­собность быстро отвечать на действие раздражителя возбуждением, в ре­зультате чего мышца способна сокра­щаться; 2) проводимость – способ­ность к проведению возбуждения от нервных окончаний до сократитель­ных структур мышечных волокон;

3) сократимость – способность к со­кращению, к укорочению или изме­нению напряжения.

Возбуждение и сокращение мышц происходят под влиянием нервных импульсов, приходящих по нервам из центральной нервной системы, из го­ловного и спинного мозга. Чтобы мышца возбудилась и ответила со­кращением, сила нервного импуль­са должна иметь достаточную вели­чину. Силу раздражения, способную вызвать сокращение мышцы, назы­вают пороговым раздражением.

Возникшая в мышце волна воз­буждения быстро распространяется по всей мышце, в результате мыш­ца сокращается, действует на кост­ные рычаги, приводя их в движение.

В мышце различают брюшко, со­стоящее из поперечно-полосатой мы­шечной ткани, и сухожильные кон­цы (сухожилия), образованные плот­ной волокнистой соединительной тканью. С помощью сухожилий мыш­цы прикрепляются к костям скелета (рис. 28).

Рис. 28. Схема начала и прикрепления мышц:

1 – мышца, 2 – сухожилие, 3 – кость

Однако некоторые мышцы могут прикрепляться и к другим ор­ганам (коже, глазному яблоку).

Конец мышцы, расположенный ближе к срединной плоскости тела. принято называть началом мышцы, другой конец, отстоящий от средин­ной плоскости, называют прикрепле­нием мышцы. Начало мышцы обычно остается неподвижным при изменении длины мышцы. Это место на кости называют неподвижной точ­кой. Место прикрепления мышцы, расположенное на кости, которая приводится в движение, называют подвижной точкой.

Основная рабочая ткань скелет­ной мышцы – поперечно-полосатая (исчерченная) мышечная ткань. Ее главным структурным и функциональным элементом является сложно устроенное мышечное волокно. Мышечные волокна – это многоядерные образования. В одном во­локне может быть более 100 ядер рис. 29). Длина мышечных волокон достигает нескольких сантиметров.

Снаружи мышечное волокно по­дрыто оболочкой – сарколеммой. В цитоплазме мышечного волокна – саркоплазме наряду с клеточными "рганеллами общего характера на­едятся и специализированные органеллы – миофибриллы. Это основные структуры мышечного волокна, состоящие из сократительных белков актина и миозина. Каждая миофибрилла состоит из сократительных участков – саркомеров. На границах саркомеров белковые молекулы расположены поперек мышечного во­локна. Эти участки, прикрепляющие­ся к сарколемме, получили название телофрагм. На середине саркомеров находятся мезофрагмы, также пред­ставляющие собой поперечную бел­ковую сеть. К телофрагме прикреп­лены нити актина, а к мезофрагме – нити миозина.

Из-за различного строения белко­вых молекул и преломления лучей света в саркомерах и на их грани­цах в мышечных волокнах видны светлые и темные участки, создаю­щие впечатления поперечно-полосатой исчерченности.

В основе мышечного сокращения лежит скольжение нитей актина и миозина относительно друг друга. Нити актина, двигаясь при возбуж­дении навстречу друг другу, умень­шают длину саркомеров.

Сократимость мышцы проявляет­ся или в ее укорочении, или в на­пряжении, при котором длина мы­шечных волокон не изменяется. В ор­ганизме мышечное сокращение воз­никает под влиянием нервных им­пульсов, которые получает мышца из центральной нервной системы по подходящим к ней нервам.

Двигательные нервные волокна, подходя к мышечным волокнам, образуют на них окончания – мотор­ные пластинки. Нервные импульсы, приходящие в область нервно-мы­шечных окончаний, стимулируют вы­деление биологически активного ве­щества – ацетилхолина, который вызывает возникновение потенциала действия. Потенциал действия рас­пространяется по мембране мышеч­ного волокна, мембранам саркоплазматического ретикулюма, вызы­вая выход ионов кальция в сарко­плазму, образование актомиазина, расщепление молекул АТФ. Осво­бождаемая при этом энергия исполь­зуется для скольжения белковых ни­тей и сокращения мышцы.

Рецепторы в скелетных мышцах представлены нервно-мышечными ве­ретенами. Каждое нервно-мышечное веретено окружено соединительно-тканной капсулой и содержит спе­циализированные мышечные волок­на, на которых располагаются чув­ствительные нервные окончания – рецепторы. Они воспринимают рас­тяжения мышцы и передают нерв­ные импульсы в центральную нерв­ную систему.

Каждая мышца состоит из боль­шого количества мышечных волокон, связанных между собой тонкими прослойками рыхлой волокнистой соединительной ткани в пучки. Груп­пы пучков покрываются более толс­той и плотной соединительнотканной оболочкой и образуют мышцу. Соединительнотканные волокна, окру­жающие мышечные волокна и их пуч­ки, выходя за пределы мышцы, фор­мируют сухожилие. Сухожилия у разных мышц неодинаковые. У мышц, расположенных на конечнос­тях, сухожилия обычно узкие и длин­ные. Сухожилия мышц, участвующих в образовании стенок полостей, ши­рокие, их называют апоневрозами.

Мышцы богаты кровеносными со­судами, по которым кровь приносит к ним питательные вещества и кис­лород, а выносит продукты обмена Источником энергии для мышечного сокращения является гликоген. В процессе его расщепления вырабатывается аденозинтрифосфатная кислота (АТФ), которая и являетсяисточником энергии для мышечного сокращения.

1. Какой процент от всей массы тела составляет мышечная у новорожденного ребенка, в юношеском возрасте, у старых людей?

2. Какие функции выполняют скелетные мышцы?


Похожая информация.


Скелетные мышцы - активная часть опорно-двигатель­ного аппарата, включающего также кости, связки, сухожилия и их сочленения. С функциональной точки зрения к двигатель­ному аппарату можно отнести и мотонейроны, вызывающие возбуждение мышечных волокон. Аксон мотонейрона при вхо­де в скелетную мышцу ветвится, и каждая веточка участвует в формировании нервно-мышечного синапса на отдельном мы­шечном волокне.

Мотонейрон вместе с иннервируемыми им мышечными во­локнами называют нейромоторной (или двигательной) едини­цей (ДЕ). В глазных мышцах одна двигательная единица со­держит 13-20 мышечных волокон, в мышцах туловища - со 1 тни волокон, в камбаловидной мышце - 1500-2500 волокон. Мышечные волокна одной ДЕ имеют одинаковые морфофунк- циональные свойства.

Функциями скелетных мышц являются: 1) передвижение тела в пространстве; 2) перемещение частей тела относитель­но друг друга, втом числе осуществление дыхательных движе­ний, обеспечивающих вентиляцию легких; 3) поддержание по­ложения и позы тела. Кроме того, поперечно-полосатые мыш­цы имеют значение в выработке тепла, поддерживающего температурный гомеостаз, и в депонировании некоторых пита­тельных веществ.

Физиологические свойства скелетных мышц выделяют:

1) возбудимость. Из-за высокой поляризации мембран поперечно-полосатых мышечных волокон (90 мВ) возбуди­мость их ниже, чем у нервных волокон. Амплитуда потенциала действия у них (130 мВ) больше, чем удругих возбудимых кле­ток. Это позволяет на практике достаточно легко регистриро­вать биоэлектрическую активность скелетных мышц. Дли­тельность потенциала действия составляет 3-5 мс. Этим определяется короткий период абсолютной рефрактерности мышечных волокон;

          проводимость. Скорость проведения возбуждения вдоль мембраны мышечного волокна составляет 3-5 м/с;

          сократимость. Представляет специфическое свойство мышечных волокон изменять свою длину и напряжение при развитии возбуждения.

Скелетные мышцы обладают также эластичностью и вязкостью.

Режимы и виды мышечных сокращений. Изотониче­ский режим - мышца укорачивается при отсутствии возрас­тания ее напряжения. Такое сокращение возможно только для изолированной (удаленной из организма) мышцы.

Изометрический режим - напряжение мышцы возрас­тает, а длина практически не уменьшается. Такое сокращение наблюдается при попытке поднять непосильный груз.

Ауксотонический режим мышца укорачивается и возрастает ее напряжение. Такое сокращение чаще всего на­блюдается при осуществлении трудовой деятельности челове­ка. Вместо термина "ауксотонический режим" часто применя­ется название концентрический режим.

Выделяют два вида мышечных сокращений: одиночное и те- таническое.

Одиночное мышечное сокращение проявляется в резуль­тате развития одиночной волны возбуждения в мышечных во­локнах. Этого можно достичь при воздействии на мышцу очень коротким (около 1 мс) стимулом. В развитии одиночного мы­шечного сокращения выделяют латентный период, фазу уко­рочения и фазу расслабления. Сокращение мышцы начинает проявляться через 10 мс от начала воздействия раздражителя. Этот временной интервал называют латентным периодом (рис.5.1). Затем последует развитие укорочения (длитель­ность около 50 мс) и расслабления (50-60 мс). Считается, что на весь цикл одиночного мышечного сокращения затрачивает­ся в среднем 0,1 с. Но следует иметь в виду, что длительность одиночного сокращения у разных мышц может сильно варьи­ровать. Она также зависит от функционального состояния мышцы. Скорость сокращения и особенно расслабления за­медляется при развитии утомления мышцы. К быстрым мыш­цам, имеющим короткий период одиночного сокращения, от­носятся мышцы языка и смыкающие веко.

Рис. 5.1. Временные соотношения разных проявлений возбуждения волокна скелетной мышцы: а - соотношение потенциала действия, выхода Са 2+ в саркоплазму и сокраще­ния: / - латентный период; 2 - укорочение; 3 - расслабление; б - соотношение потенциала действия, сокращения и уровня возбудимости

Под влиянием одиночного раздражителя вначале возникает потенциал действия и лишь затем начинает развиваться пери­од укорочения. Оно продолжается и после окончания реполя­ризации. Восстановление исходной поляризации сарколеммы свидетельствует и о восстановлении возбудимости. Следова­тельно, на фоне развивающегося сокращения в мышечных во­локнах можно вызвать новые волны возбуждения, сократи­тельный эффект от которых будет суммироваться.

Тетаническим сокращением или тетанусом называют сокращение мышцы, появляющееся в результате возникнове­ния в моторных единицах многочисленных волн возбуждения, сократительный эффект от которых суммируется по амплитуде и времени.

Различают зубчатый и гладкий тетанус. Для получения зуб­чатого тетануса надо стимулировать мышцу с такой частотой, чтобы каждое последующее воздействие наносилось после фа­зы укорочения, но до момента окончания расслабления. Гладкий тетанус получается при более частых раздражениях, когда по­следующие воздействия наносятся во время развития укороче­ния мышцы. Например, если фаза укорочения у мышцы состав­ляет 50 мс, а фаза расслабления - 60 мс, то для получения зуб­чатого тетануса необходимо раздражать эту мышцу с частотой 9-19 Гц, для получения гладкого - с частотой не менее 20 Гц.

Несмотря

Амплитуда сокращений

расслабилась

Пессимум

на длящееся раздражение, мышца

30 Гц

1 Гц 7 Гц

200 Гц

50 Гц

Частота раздражения

Рис. 5.2. Зависимость амплитуды сокращения от частоты раздражения (сила и длительность стимулов неизменны)

Для демонстрации различных видов тетануса обычно ис­пользуют регистрацию сокращений изолированной икронож­ной мышцы лягушки на кимографе. Пример такой кимограм- мы представлен на рис. 5.2. Амплитуда одиночного сокраще­ния минимальна, увеличивается при зубчатом тетанусе и ста­новится максимальной - при гладком. Одной из причин такого возрастания амплитуды является то, что при возникновении частых волн возбуждения в саркоплазме мышечных волокон накапливается Са 2+ стимулирующий взаимодействие сокра­тительных белков.

При постепенном увеличении частоты раздражения нарас­тание силы и амплитуды сокращения мышцы идет лишь до не­которого предела - оптимума ответной реакции. Частоту раздражения, вызывающую наибольший ответ мышцы, назы­вают оптимальной. Дальнейшее увеличение частоты раздра­жения сопровождается уменьшением амплитуды и силы со­кращения. Это явление называют пессимумом ответной ре­акции, а частоты раздражения, превышающие оптимальную величину, - пессимальными. Явления оптимума и пессимума были открыты Н.Е. Введенским.

При оценке функциональной активности мышц говорят об их тонусе и фазических сокращениях. Тонусом мышцы называ­ют состояние длительного непрерывного напряжения. При этом видимое укорочение мышцы может отсутствовать из-за того, что возбуждение возникает не во всех, а лишь в некоторых мо­торных единицах мышцы и они возбуждаются не синхронно. Фазическим сокращением мышцы называют кратковремен­ное укорочение мышцы, сменяющееся ее расслаблением.

Структурно -функциональная характеристика мышечно­го волокна. Структурной и функциональной единицей скелет­ной мышцы является мышечное волокно, представляющее со­бой вытянутую (длиной 0,5-40 см) многоядерную клетку. Тол­щина мышечных волокон составляет 10- 100 мкм. Диаметр их может увеличиваться при интенсивных тренировочных нагруз­ках, количество же мышечных волокон может нарастать лишь до 3-4-месячного возраста.

Мембрану мышечного волокна называют сарколеммой, цитоплазму - саркоплазмой. В саркоплазме располагаются ядра, многочисленные органеллы, саркоплазматический рети- кулум, в состав которого входят продольные трубочки и их утолщения - цистерны, в которых содержатся запасы Са 2+ Цистерны соседствуют с поперечными трубочками, пронизы­вающими волокно в поперечном направлении (рис. 5.3).

В саркоплазме вдоль мышечного волокна проходит около 2000 миофибрилл (толщиной около 1 мкм), которые включают нити, образованные сплетением молекул сократительных бел­ков: актина и миозина. Молекулы актина образуют тонкие нити (миофиламенты), которые лежат параллельно друг другу и про­низывают своеобразную мембрану, называемую Z-линией или полоской. Z-линии расположены перпендикулярно длинной оси миофибриллы и делят миофибриллу на участки длиной 2- 3 мкм. Эти участки называют саркомерами.

Цистерна Сарколемма

Поперечная трубочка

Саркомер

Трубочка с-п. рет^|

Jj3H сссс с_ з зззз tccc ;

; зззз сссс с

з зззз сссс с

j3333 СССС£

J3333 с с с с с_

J3333 сс с с с_

Саркомер сокращен

3 3333 сссс с

Саркомер расслаблен

Рис. 5.3. Строение саркомера мышечного волокна: Z-линии - ограничивают саркомер,/! - анизотропный (темный)диск, / - изотропный (светлый) диск, Н - зона (менее темная)

Саркомер является сократительной единицей миофибрил- лы- В центре саркомера строго упорядоченно друг над другом лежат толстые нити, сформированные молекулами миозина, flo краям саркомера аналогичным образом расположены тон­кие нити актина. Концы актиновых нитей заходят между кон­цами миозиновых нитей.

Центральная часть саркомера (ширина 1,6 мкм), в которой лежат мио- зиновые нити, под микроскопом выглядит темной. Этот темный участок прослеживается поперек всего мышечного волокна, так как саркомеры соседних миофибрилл располагаются строго симметрично друг над дру­гом. Темные участки саркомеров получили название А-дисков от слова "анизотропный" Эти участки обладают двойным лучепреломлением в поляризованном свете. Зоны по краям А-диска, где нити актина и миози­на перекрываются, кажутся темнее, чем в центре, где находятся только миозиновые нити. Этот центральный участок называют полоской Н.

Участки миофибриллы, в которых располагаются только актиновые нити, не обладают двойным лучепреломлением, они изотропны. Отсюда их название - I-диски. В центре I-диска проходит узкая темная линия, образованная Z-мембраной. Эта мембрана удерживает в упорядоченном состоянии актиновые нити двух соседних саркомеров.

В состав актиновой нити кроме молекул актина входят так­же белки тропомиозин и тропонин, влияющие на взаимодей­ствие нитей актина и миозина. В молекуле миозина выделяют участки, которые называют головкой, шейкой и хвостом. В каждой такой молекуле имеется один хвост и по две головки с шейками. На каждой головке имеется химический центр, ко­торый может присоединять АТФ и участок, позволяющий свя­зываться с актиновой нитью.

Молекулы миозина при формировании миозиновой нити сплетаются своими длинными хвостами, располагающимися в центре этой нити, а головки находятся ближе к ее концам (рис. 5.4). Шейка и головка образуют выступ, торчащий из мио­зиновых нитей. Эти выступы называют поперечными мостика­ми. Они подвижны, и благодаря таким мостикам миозиновые нити могут установить связь с актиновыми.

Когда к головке молекулы миозина присоединяется АТФ, то мостик на короткое время располагается под тупым углом относительно хвоста. В следующий момент происходит частич­ное расщепление АТФ и за счет этого головка приподнимает­ся, переходит в энергизированное положение, при котором она может связываться с актиновой нитью.

Молекулы актина образуют двойную спираль Тролонин

Центр связи с АТФ

Участок тонкой нити (вдоль цепочек актина располагаются молекулы тропомиозина, тролонин в узлах спирали)

Шейка

Хвост

Тропомиоэин т i

Молекула миозина при большом увеличении

Участок толстой нити (видны головки молекул миозина)

Нить актина

Головка

+Са 2+

Са 2+ "*Са 2+

АДФ- Ф

Са 2+ N

Расслабление

Цикл движений головки миозина при сокращении мышцы

миозина 0 +АТФ

Рис. 5.4. Структура нитей актина и миозина, движение головок миозина при сокращении и расслаблении мышцы. Объяснение в тексте: 1-4 - этапы цикла

Механизм сокращения мышечного волокна. Возбужде­ние волокна скелетной мышцы в условиях физиологической нормы вызывается только импульсами, приходящими от мото­нейронов. Нервный импульс активирует нервно-мышечный синапс, вызывает возникновение ПК.П, а потенциал концевой пластинки обеспечивает генерацию потенциала действия на сарколемме.

Потенциал действия распространяется как вдоль поверх­ностной мембраны мышечного волокна, так и вглубь по попе­речным трубочкам. При этом происходит деполяризация цис­терн саркоплазматического ретикулума и открытие Са 2+ -ка­налов. Поскольку в саркоплазме концентрация Са 2+ состав­ляет 1(Г 7 -1(Г б М, а в цистернах она приблизительно в 10 ООО раз большая, то при открытии Са 2+ -каналов кальций по градиенту концентрации выходит из цистерн в саркоплазму, диффундирует к миофиламентам и запускает процессы, обес­печивающие сокращение. Таким образом, выход ионов Са 2+

в саркоплазму является фактором, сопрягающим электриче­ские и механические явления в мышечном волокне. Ионы Са 2+ связываются с тропонином и это, при участии тропомио- зина, приводит к открытию (разблокировке) участков актино­вой нити, которые могут связываться с миозином. После этого энергизированные головки миозина образуют мостики с акти­ном, происходит окончательное расщепление АТФ, ранее за­хваченных и удерживаемых головками миозина. Получаемая от расщепления АТФ энергия идет на поворот головок миози­на в направлении к центру саркомера. При таком повороте головки миозина тянут за собой актиновые нити, продвигая их между миозиновыми. За одно грёбковое движение головка может продвинуть актиновую нить на-1 % от длины саркомера. Для максимального сокращения нужны повторные гребковые движения головок. Это имеет место при достаточной концен­трации АТФ и Са 2+ в саркоплазме. Для повторного движения головки миозина необходимо, чтобы к ней присоединилась новая молекула АТФ. Подсоединение АТФ вызывает разрыв связи головки миозина с актином и она на мгновение занимает исходное положение, из которого может переходить к взаимо­действию с новым участком актиновой нити и делать новое гребковое движение.

Такую теорию механизма мышечного сокращения назвали теорией "скользящих нитей"

Для расслабления мышечного волокна необходимо, чтобы концентрация ионов Са 2+ в саркоплазме стала менее Ю -7 М/л. Это происходит за счет функционирования кальциевого насо­са, который перегоняет Са 2+ из саркоплазмы в ретикулум. Кроме того, для расслабления мышцы необходимо, чтобы бы­ли разорваны мостики между головками миозина и актином. Такой разрыв происходит при наличии в саркоплазме молекул АТФ и связывания их с головками миозина. После отсоедине­ния головок эластические силы растягивают саркомер и пере­мещают нити актина в исходное положение. Эластические си­лы формируются за счет: 1) эластической тяги спиралевидных клеточных белков, входящих в структуру саркомера; 2) элас­тических свойств мембран саркоплазматического ретикулума и сарколеммы; 3) эластичности соединительной ткани мышцы, сухожилий и действия сил гравитации.

Сила мышц. Силу мышцы определяют по максимальной Величине груза, который она может поднять, либо по макси­мальной силе (напряжению), которую она может развить в условиях изометрического сокращения.

Одиночное мышечное волокно способно развить напряже­ние 100-200 мг. В теле примерно 15-30 млн волокон. Если бы они действовали параллельно в одном направлении и одно­временно, то могли бы создать напряжение 20-30 т.

Сила мышц зависит от ряда морфофункциональных, фи­зиологических и физических факторов.

    Сила мышц возрастает с увеличением площади их гео­метрического и физиологического поперечного сечения. Для определения физиологического поперечного сечения мышцы находят сумму поперечных сечений всех волокон мышцы по линии, проведенной перпендикулярно к ходу каждого мышеч­ного волокна.

В мышце с параллельным ходом волокон (портняжная) геометрическое и физиологическое поперечные сечения рав­ны. В мышцах с косым ходом волокон (межреберные) физио­логическое сечение больше геометрического и это способ­ствует увеличению силы мышц. Еще больше возрастает фи­зиологическое сечение и сила у мышц с перистым расположе­нием (большинство мышц тела) мышечных волокон.

Чтобы иметь возможность сопоставить силу мышечных во­локон в мышцах с различным гистологическим строением, ввели понятие абсолютной силы мышцы.

Абсолютная сила мышцы - максимальная сила, развива­емая мышцей, в перерасчете на 1 см 2 физиологического попе­речного сечения. Абсолютная сила бицепса - 11,9 кг/см 2 , трехглавой мышцы плеча - 16,8 кг/см 2 , икроножной 5,9 кг/см 2 , гладкой - 1 кг/см 2

    Сила мышцы зависит от процентного соотношения раз­личных типов двигательных единиц, входящих в эту мышцу. Соотношение разных типов двигательных единиц в одной и той же мышце у людей неодинаково.

Выделяют следующие типы двигательных единиц: а) мед­ленные, неутомляемые (имеют красный цвет) - обладают ма­лой силой, но могут быть длительно в состоянии тонического сокращения без признаков утомления; б) быстрые, легко- утомляемые (имеют белый цвет) - их волокна обладают боль­шой силой сокращения; в) быстрые, устойчивые к утомлению - имеют относительно большую силу сокращения и в них мед­ленно развивается утомление.

У разных людей соотношение числа медленных и быстрых двигательных единиц в одной и той же мышце определено ге­нетически и может значительно различаться. Так, в четырех­главой мышце бедра человека относительное содержание мед- денных волокон может варьировать от 40 до 98%. Чем боль­ший процент медленных волокон в мышцах человека, тем бо­лее они приспособлены к длительной, но небольшой по мощности работе. Люди с высоким содержанием быстрых сильных моторных единиц способны развивать большую силу, но склонны к быстрому утомлению. Однако надо иметь в виду, что утомление зависит и от многих других факторов.

    Сила мышцы увеличивается при умеренном ее растяже­нии. Это происходит из-за того, что при умеренном растяже­нии саркомера (до 2,2 мкм) увеличивается количество мости­ков, которые могут образоваться между актином и миозином. При растяжении мышцы в ней также развивается эластиче­ская тяга, направленная на укорочение. Эта тяга суммируется с силой, развиваемой движением головок миозина.

    Сила мышц регулируется нервной системой путем изме­нения частоты импульсаций, посылаемых к мышце, синхрони­зации возбуждения большого числа моторных единиц, выбора типов моторных единиц. Сила сокращений увеличивается: а) при возрастании количества возбуждаемых моторных еди­ниц, вовлекаемых в ответную реакцию; б) при увеличении час­тоты волн возбуждения в каждом из активируемых волокон; в) при синхронизации волн возбуждения в мышечных волок­нах; г) при активации сильных (белых) моторных единиц.

Сначала (при необходимости развития небольшого усилия) активируются медленные неутомляемые моторные единицы, затем быстрые, устойчивые к утомлению. А если надо развить силу более 20-25% от максимальной, то в сокращение вовле­каются быстрые легкоутомляемые моторные единицы.

При напряжении до 75% от максимально возможного практически все моторные единицы активированы и дальнейший прирост силы идет за счет увеличения частоты импульсов, приходящих к мышечным волокнам.

При слабых сокращениях частота импульсаций в аксонах мотонейро­нов составляет 5-10 имп/с, а при большой силе сокращения может до­ходить до 50 имп/с.

В детском возрасте прирост силы идет главным образом за счет увеличения толщины мышечных волокон, и это связано с увеличением количества миофибрилл. Увеличение числа во­локон незначительно.

При тренировке мышцу взрослых нарастание их силы свя­зано с увеличением числа миофибрилл, повышение же вынос­ливости обусловлено увеличением числа митохондрий и ин­тенсивности синтеза АТФ за счет аэробных процессов.

Существует взаимосвязь силы и скорости укорочения. Ско­рость сокращения мышцы тем выше, чем больше ее длина (за счет суммации сократительных эффектов саркомеров) и зави­сит от нагрузки на мышцу. При увеличении нагрузки скорость сокращения уменьшается. Тяжелый груз можно поднять толь­ко при медленном движении. Максимальная скорость сокра­щения, достигаемая при сокращении мышц человека, около 8 м/с.

Сила сокращения мышцы снижается при развитии утом­ления.

Утомление и его физиологические основы. Утомлением называют временное понижение работоспособности, обуслов­ленное предыдущей работой и исчезающее после периода отдыха.

Утомление проявляется снижением мышечной силы, ско­рости и точности движений, изменением показателей работы кардиореспираторной системы и вегетативных регуляций, ухудшением показателей функций центральной нервной сис­темы. О последнем свидетельствует снижение скорости про­стейших психических реакций, ослабление внимания, памяти, ухудшение показателей мышления, возрастание количества ошибочных действий.

Субъективно утомление может проявляться ощущением усталости, появлением боли в мышцах, сердцебиением, симп­томами одышки, желанием снизить нагрузку или прекратить работу. Симптомы усталости могут различаться в зависимости от вида работы, ее интенсивности и степени утомления. Если утомление вызвано умственной работой, то, как правило, бо­лее выражены симптомы снижения функциональных возмож­ностей психической деятельности. При очень тяжелой мышеч­ной работе на первый план могут выступать симптомы нару­шений на уровне нервно-мышечного аппарата.

Утомление, развивающееся в условиях обычной трудовой деятельности как при мышечной, так и при умственной работе, имеет во многом сходные механизмы развития. В обоих случа­ях процессы утомления раньше всего развиваются в нервных центрах. Одним из показателей этого является снижение ум­ственной работоспособности при физическом утомлении, а при умственном утомлении - снижение эффективности мы­шечной деятельности.

Отдыхом называют состояние покоя или выполнение но­вой деятельности, при которых устраняется утомление и вос­станавливается работоспособность. И.М. Сеченов показал, что восстановление работоспособности происходит быстрее, если при отдыхе после утомления одной группы мышц(напри- мер, левой руки), выполнять работу другой группой мышц (правой рукой). Это явление он назвал "активным отдыхом"

Восстановлением называют процессы, обеспечивающие ликвидацию дефицита запасов энергетических и пластических веществ, воспроизведение израсходованных или поврежден­ных при работе структур, устранение избытка метаболитов и отклонений показателей гомеостаза от оптимального уровня.

Длительность периода, необходимого для восстановления организма, зависит от интенсивности и длительности работы. Чем больше интенсивность труда, тем через более короткое время необходимо делать периоды отдыха.

Различные показатели физиологических и биохимических процессов восстанавливаются через разное время от момента окончания физической нагрузки. Одним из важных тестов ско­рости восстановления является определение времени, в тече­ние которого частота сердечных сокращений возвращается к уровню, характерному для периода покоя. Время восстановле­ния частоты сердечных сокращений после теста с умеренной физической нагрузкой у здорового человека не должно превы­шать 5 мин.

При очень интенсивной физической нагрузке явления утомления развиваются не только в центральной нервной сис­теме, но и в нервно-мышечных синапсах, а также мышцах. В системе нервно-мышечного препарата наименьшей утомля­емостью обладают нервные волокна, наибольшей - нервно- мышечный синапс, промежуточное положение занимает мыш- Ца. Нервные волокна часами могут проводить высокую частоту потенциалов действия без признаков утомления. При частой Же активации синапса эффективность передачи возбуждения сначала уменьшается, а затем наступает блокада его проведе­ния. Это происходит из-за снижения запаса медиатора и АТФ в пресинаптической терминали, снижения чувствительности постсинаптической мембраны к ацетилхолину.

Был предложен ряд теорий механизма развития утомления в очень интенсивно работающей мышце: а) теория "истоще­ния" - израсходование запасов АТФ и источников ее образо­вания (креатинфосфата, гликогена, жирных кислот), б)теория "удушения" - на первое место выдвигается недостаток до­ставки кислорода в волокна работающей мышцы; в) теория "засорения", объясняющая утомление накоплением в мышце молочной кислоты и токсичных продуктов обмена веществ. В настоящее время считается, что все эти явления имеют мес­то при очень интенсивной работе мышцы.

Установлено, что максимальная физическая работа до раз­вития утомления выполняется при средней тяжести и темпе труда (правило средних нагрузок). В профилактике утомления важны также: правильное соотношение периодов труда и от­дыха, чередование умственной и физической работы, учет око­лосуточных (циркадных), годовых и индивидуальных биологи­ческих ритмов.

Мощность мышцы равна произведению мышечной силы на скорость укорочения. Максимальная мощность развивает­ся при средней скорости укорочения мышц. Для мышцы руки максимальная мощность (200 Вт) достигается при скорости сокращения 2,5 м/с.

5.2. Гладкие мышцы

Физиологические свойства и особенности гладких мышц.

Гладкие мышцы являются составной частью некоторых внут­ренних органов и участвуют в обеспечении функций, выполня­емых этими органами. В частности, регулируют проходимость бронхов для воздуха, кровотока в различных органах и тканях, перемещения жидкостей и химуса (в желудке, кишечнике, мо­четочниках, мочевом и желчном пузырях), осуществляют из­гнание плода из матки, расширяют или сужают зрачки (за счет сокращения радиальных или циркулярных мышц радужной оболочки), изменяют положение волос и кожного рельефа. Гладкомышечные клетки имеют веретенообразную форму, длину 50-400 мкм, толщину 2-10 мкм.

Гладкие мышцы, как и скелетные, обладают возбудимос­тью, проводимостью и сократимостью. В отличие от скелетных м ышц, имеющих эластичность, гладкие - пластичны (способ­ны длительное время сохранять приданную им за счет растя­жения длину без увеличения напряжения). Такое свойство важно для выполнения функции депонирования пищи в желуд­ке или жидкостей в желчном и мочевом пузырях.

Особенности возбудимости гладкомышечных волокон в определенной мере связаны с их низким трансмембранным по­тенциалом (Е 0 = 30-70 мВ). Многие из этих волокон облада­ют автоматией. Длительность потенциала действия у них мо­жет достигать десятков миллисекунд. Так происходит потому, что потенциал действия в этих волокнах развивается преиму­щественно за счет входа кальция в саркоплазму из межклеточ­ной жидкости через так называемые медленные Са 2+ -каналы.

Скорость проведения возбуждения в гладкомышечных клетках малая - 2-10 см/с. В отличие от скелетных мышц возбуждение в гладкой мышце может передаваться с одного волокна на другое, рядом лежащее. Такая передача происходит благодаря наличию между гладкомышечными волокнами нек­сусов, обладающих малым сопротивлением электрическому току и обеспечивающих обмен между клетками Са 2+ и други­ми молекулами. В результате этого гладкая мышца имеет свойства функционального синтиция.

Сократимость гладкомышечных волокон отличается про­должительным латентным периодом (0,25-1,00 с) и большой длительностью (до 1 мин) одиночного сокращения. Гладкие мышцы имеют малую силу сокращения, но способны длительно находиться в тоническом сокращении без развития утомления. Это связано с тем, что на поддержание тетанического сокраще­ния гладкая мышца расходует в 100-500 раз меньше энергии, чем скелетная. Поэтому расходуемые гладкой мышцей запасы АТФ успевают восстанавливаться даже во время сокращения и гладкие мышцы некоторых структур организма всю жизнь нахо­дятся в состоянии тонического сокращения.

Условия сокращения гладкой мышцы. Важнейшей особен­ностью гладкомышечных волокон является то, что они возбужда­ются под влиянием многочисленных раздражителей. Сокраще­ние скелетной мышцы в норме инициируется только нервным им­пульсом, приходящим к нервно-мышечному синапсу. Сокраще­ние гладкой мышцы может быть вызвано как нервными Импульсами, так и биологически активными веществами (гормо­нами, многими нейромедиаторами, простагландинами, некоторы­ми метаболитами), а также воздействием физических факторов, например растяжением. Кроме того, возбуждение гладкой мыш­цы может произойти спонтанно - за счет автоматии.

Очень высокая реактивность гладких мышц, их свойство отвечать сокращением на действие разнообразных факторов создают значительные трудности для коррекции нарушений тонуса этих мышц в медицинской практике. Это видно на при­мерах лечения бронхиальной астмы, артериальной гиперто­нии, спастического колита и других заболеваний, требующих коррекции сократительной активности гладких мышц.

В молекулярном механизме сокращения гладкой мышцы также имеется ряд отличий от механизма сокращения скелетной мышцы. Нити актина и миозина в гладкомышечных волокнах располагаются менее упорядоченно, чем в скелетных, и поэтому гладкая мышца не имеет поперечной исчерченности. В актино- вых нитях гладкой мышцы нет белка тропонина и молекулярные центры актина всегда открыты для взаимодействия с головками миозина. Чтобы такое взаимодействие произошло, необходимо расщепление молекул АТФ и перенос фосфата на головки мио­зина. Тогда молекулы миозина сплетаются в нити и связывают­ся своими головками с миозином. Далее следует поворот голо­вок миозина, при котором актиновые нити втягиваются между миозиновыми и происходит сокращение.

Фосфорилирование головок миозина производится с помо­щью фермента киназы легких цепей миозина, а дефосфорили- рование - фосфатазы легких цепей миозина. Если активность фосфатазы миозина преобладает над активностью киназы, то головки миозина дефосфорилируются, связь миозина и актина разрывается и мышца расслабляется.

Следовательно, чтобы произошло сокращение гладкой мышцы, необходимо повышение активности киназы легких цепей миозина. Ее активность регулируется уровнем Са 2+ в саркоплазме. При возбуждении гладкомышечного волокна со­держание кальция в его саркоплазме увеличивается. Это уве­личение обусловлено поступлением Са^ + из двух источников: 1) межклеточного пространства; 2) саркоплазматического ре- тикулума (рис. 5.5). Далее ионы Са 2+ образуют комплекс с белком кальмодулином, который переводит в активное состо­яние киназу миозина.

Последовательность процессов, приводящих к развитию сокращения гладкой мышцы: вход Са 2 в саркоплазму - акти­

вация кальмодулина (путем образования комплекса 4Са 2+ - кальмодулин) - активация киназы легких цепей миозина - фосфорилирование головок миозина - связывание головок миозина с актином и поворот головок, при котором нити акти­на втягиваются между нитями миозина.

Условия, необходимые для расслабления гладкой мышцы: 1) снижение (до 10 М/л и менее) содержания Са 2+ в сарко­плазме; 2) распад комплекса 4Са 2+ -кальмодулин, приводя­щий к снижению активности киназы легких цепей миозина - дефосфорилирование головок миозина, приводящее к разрыву связей нитей актина и миозина. После этого силы упругости вызывают относительно медленное восстановление исходной длины гладкомышечного волокна, его расслабление.

Контрольные вопросы и задания

    Клеточная мембрана

    Рис. 5.5. Схема путей поступления Са 2+ в саркоплазму гладкомышеч-

    ной клетки и удаления его из плазмы: а - механизмы, обеспечивающие поступление Са 2 + в саркоплазму и запуск со- кращеня (Са 2+ поступает из внеклеточной среды и саркоплазматического рети- кулума); б - пути удаления Са 2+ из саркоплазмы и обеспечения расслабления

    Влияние норадреналина через а-адренорецепторы

    Лигандзависимый Са 2+ -канал

    Каналы "утечки г

    Потенциал зависимый Са 2+ -канал

    Гладкомышечная клетка

    а-адрено! рецептор f Норадре- налин G

    Назовите виды мышц человека. Каковы функции скелет­ных мышц?

    Дайте характеристику физиологических свойств скелет­ных мышц.

    Каково соотношение потенциала действия, сокращения и воз­будимости мышечного волокна?

    Какие существуют режимы и виды мышечных сокращений?

    Дайте структурно-функциональную характеристику мышеч­ного волокна.

    Что такое моторные единицы? Перечислите их виды и осо­бенности.

    Каков механизм сокращения и расслабления мышечного волокна?

    Что такое сила мышц и какие факторы на нее влияют?

    Какова связь между силой сокращения, его скоростью и работой?

    Дайте определение утомления и восстановления. Каковы их физиологические основы?

    Каковыфизиологические свойства и особенности гладких мышц?

    Перечислите условия сокращения и расслабления гладкой мышцы.

Мембранный потенциал поперечно-полосатых мышечных волокон - (-80)- (-90) мВ, а пороговый уровень деполяризации - около -50 мВ ПД, возникая на постсинаптичній мембране мышечного волокна, распространяется сарколемою (мембраной, которая окружает мышечное волокно) в обе стороны от места образования (синапса). Он передается сарколемою електрогенно (аналогично передаче ПД безм"якушевим нервным волокном). Длительность ПД в большинстве скелетных мышц - 2-3 мс. В связи с этим, а также с необходимостью большей поляризации мембраны для возникновения спайка (МП КР = 40 мВ), скорость распространения ПД мембраной мышечного волокна составляет около 3-5 м1с. Через короткое время после поступления ПД мышечное волокно начинает сокращаться. Чтобы понять механизм сокращения мышцы, необходимо ознакомиться с его микроструктурой.

Структура мышечного волокна

Мышечное волокно в диаметре не превышает 0,1 мм, а длина его может составлять от нескольких миллиметров до 12 см (рис. 20).

Под световым микроскопом видно чередование темных и светлых полос (поперечная посмугованість). Темные диски (анизотропные диски - А) имеют двойную променезаломлюваність, светлые (изотропные диски - И) этого свойства не имеют. Часть мышечного волокна от середины одного изотропного диска до середины другого называют саркомером. Длина саркомера в мышце в состоянии покоя - около 2 мкм, а в сокращенном с максимальной силой-немного больше чем 1 мкм. (На рис. 20 изображен саркомер, ограниченный с двух сторон 2-линиями; И - изотропный диск; А - анизотропный диск; Н - участок с уменьшенной анізотропністю. Поперечный срез миофибриллы (д) дает представление о гексагональный распределение толстых и тонких міофіламентів).

Сарколема. Мембрана мышечного волокна - сарколема - образована типичной плазматичною мембраной, укрепленной соединительнотканными волокнами. Последние, сочетаясь у концов мышечных волокон, образуют сухожилки, с помощью которых мышца прикрепляется к костям.

Саркоплазма. В саркоплазмі мышечного волокна находится типичный набор органоидов. Но на особое внимание заслуживает один из них - саркоплазматич-

Рис. 20. в состав мышцы (а) входят мышечные волокна (б), каждое из которых содержит миофибриллы (в). Міофібрила (г) образована из толстых и тонких міофіламентів (г, д)

нийретикулум (СР). Это широко разветвленная сеть, состоящая из цистерн и трубочек, ограниченных двухслойными белково-ліпідними мембранами (рис. 21). Саркоплазматический ретикулум выполняет важную функцию в инициации сокращения мышцы как депо Са2+.

Рис. 21. (по Б.И. Ходоровим): а - распределение трубок (Т-системы) и СР внутри саркомера; б - триада: во время распространения ПД Т-трубкой из цистерны СР выделяются Са2 которые, связываясь с тропоніном в комплексе тропонін-тропоміозин, устраняют тормозное влияние на актиновий міофіламент. Поперечные мостики міозинових филаментов могут теперь взаимодействовать с актиновими філамснтами. Процесс расслабления связан с активным возвращением Са2+ в цистерны

Необходимо упомянуть и о наличии в саркоплазмі белка миоглобина, что служит депо кислорода внутри волокна.

Сократительные протофібрили. Внутри мышечного волокна в саркоплазмі упорядоченно располагаются сократительные протофібрили. Различают протофібрили двух типов: толстые (толщиной 15-17 нм) и тонкие (толщиной около 6 нм). Тонкие протофібрили расположены в И-зоне и с белковыми актиновими нитками. Толстые нити, которые размещены в зоне А, называют міозиновими (см. рис. 20).

Более двухсот молекул миозина участвуют в образовании міозинових филаментов (скрученные попарно, имеют виступний отросток головку). Головки направлены под углом от центра в сторону тонких нитей (напоминают "ерша" для мытья посуды). В основе головки миозина содержится фермент АТФаза, а на самой головке размещается молекула АТФ.

Лктинові філаменти скомпоновано из двух актинових нитей глобулярних молекул актина, имеют вид бусинок. Тонкие нити имеют активные центры, расположены друг от друга на расстоянии 40 нм, к которым могут прикрепляться головки миозина. Кроме актина в тонких нитях содержатся и другие белки - тропониновый комплекс (кальмодулин), который размещается над активными центрами, прикрывая их, что препятствует соединению актина с міозином.

Тонкие нити проходят через середину И-зоны в два близлежащих саркомери. Посередине этой зоны размещена Х-мембрана, что отделяет саркомери друг от друга. Таким образом, содержимое каждого саркомера изолированный сарколемою и Z-мембранами.

Механизм мышечного сокращения

Инициация мышечного сокращения. Распространяясь по наружной мембране, ПД заходит внутрь мышечного волокна (см. рис. 21), здесь он передается на мембрану саркоплазматичного ретикула, где открывает електрозбудливі кальциевые каналы. За то, что в саркоплазмі концентрация кальция меньше чем 10~7 моль1л, а в саркоплазматичному ретикулі - более 10 4 моль1л, начинается интенсивный выход его ионов в саркоплазме.

Выделенный кальций становится инициатором мышечного сокращения. Достаточный для начала мышечного сокращения уровень кальция достигается через 12-15 мс после прихода нервного импульса. Это скрытый, латентный, время мышечного сокращения. В связи с тем, что скорость распространения ПД сарколемою больше времени, необходимого для выделения Са2" из саркоплазматичного ретикула, все фибриллы участка мышцы, иннервируемых одним нервом, сокращаются одновременно.

В инициации мышечного сокращения после поступления в саркоплазме Са2+ определенную роль играет кальмодулин. Присоединяя Са2+, кальмодулин способствует активации Атфазы и использованию энергии АТФ для связи активного центра актинової нити с головкой миозина, а также укорочению мышцы (рис. 22). При соединении кальмодулина (тропонін С) с кальцием активный центр актина высвобождается, вследствие чего к нему присоединяется головка миозина. Эти процессы происходят в том случае, если концентрация свободного кальция в саркоплазмі возрастает в 100 и более раз: с 10"7 до 10~5 моль1л.

"Шарнирный механизм". Вследствие сочетания указанных процессов происходит:

а) подтягивание нитей миозина к атинових;

б) зарядка миозина энергией, которое применяется для выполнения поворота міозинової головки.

Рис. 22. а - поперечные мостики в состоянии расслабления мышечного волокна; 6 - во время сокращения (стрелками указано направление движения актинових протофібрил (и) двух половин саркомера); в - модель развития напряжения в поперечных мостиках

время их сокращения (слева - в состоянии расслабления, справа - во время сокращения мышечного волокна). 4 - шейка поперечного мостика; 5 - головка поперечного мостика

После этого образуемые фосфор и аденозиндифосфорна кислота (АДФ) уходят, а на их место присоединяется новая молекула АТФ, что приводит к разрыву связи миозина с активным центром актина.

При сокращении мышцы:

а) актинові и міозинові нити практически не укорачиваются;

б) взаимодействие актина с міозином приводит к взаимного вхождения нитей в промежутки между ними;

в) две прилегающие 7-мембраны сближаются друг с другом, и при максимально сильном сокращении расстояние между ними может уменьшиться почти вдвое;

г) при уменьшении длины мышцы саркомер расширяется, поскольку заключена внутри саркомера саркоплазма не сжимается;

г) подобные процессы одновременно протекают во всех саркомерах мышечного волокна, поэтому оба конца мышцы подтягиваются к центру.

в настоящее время еще окончательно неизвестен механизм, который обеспечивает вхождение актоміозинових нитей друг в друга. Общепринятая гипотеза "шарнирного механизма" (см. рис. 22). После соединения головки миозина с активным центром актина происходит ее поворот на 45°. Вследствие разрыва мостика шейка головки миозина выпрямляется, приобретая исходное положение. За такие движения эта система и получила название шарнирного механизма. Во время поворота миозин продвигается актином на один "шаг", или "гребок", равен 20 нм. Поступления новой порции Са2+ приводит к повторению "шага", но теперь уже другой головки, что оказалась напротив нового активного центра актина, поскольку они расположены на расстоянии около 40 нм друг от друга. В связи с тем что міозинові нити имеют биполярную организацию головок, то параллельные "гребки" их обеспечивают скольжение актинових нитей вдоль саркомера (от мембраны до его середины).

Расслабление мышцы.

Указанные процессы ("шаги") будут повторяться до тех пор, пока саркоплазма содержит свободный Са2" (в концентрации более 10-5 моль1л) и АТФ. Если нет новой волны деполяризации, кальций быстро возвращается обратно в цистерны саркоплазматичного ретикула. Он откачивается из саркоплазми против градиента концентрации с помощью Са2+-насоса, расположенного на мембране саркоплазматичного ретикула. Работа этого насоса, что требует большого количества АТФ (для удаления каждого Са2+ используется 2 молекулы АТФ), активируется самим кальцием, точнее, ростом его концентрации в саркоплазмі. Следствие откачивания кальция из саркоплазми - разрыв всех связей актина и миозина и расслаблению мышцы.

Энергетика мышечного сокращения

АТФ в мышце необходима для:

1) сокращения (образования мостиков);

2) расслабления (разрыва мостиков);

3) работы Са2+-насоса;

4) работы К* - насоса (для устранения нарушенных ионных градиентов вследствие поступления возбуждение).

Однако в саркоплазмі мышцы АТФ относительно немного. ее хватит лишь на несколько мышечных сокращений (примерно восемь одиночных сокращений). Вместе с тем в естественных условиях мышцы могут сокращаться длительное время, что становится возможным лишь благодаря активации механизмов ре-синтеза АТФ креатинфосфокіназного, гліколітичного, аэробного окисления.

Последовательность "включения" указанных путей ресинтеза АТФ такая. Сначала, сразу после гидролиза АТФ, начинается ее восстановление за счет креатинфосфата (КФ):

АДФ + КФ <=>АТФ + КФ.

Креатинфосфокіназний путь безынерционный (он запускается сразу АДФ, что образуется) и может обеспечить сокращение мышц в течение нескольких секунд. Одновременно с ним активируется гліколітичний путь. Образование АТФ во время гликолиза углеводов происходит при участии ферментов, активность которых возрастает постепенно от начала мышечных сокращений. Но уже через 15-20 с они становятся достаточно активными, чтобы подхватить эстафету ресинтеза АТФ при истощении КФ. Недостаток этого пути - меньший выход АТФ за единицу времени по сравнению с предыдущим. Кроме того, во время гликолиза образуются недоокиснені продукты (молочная, пировиноградная кислоты), что в случае интенсивного образования не успевают выйти из мышцы, приводя к нарушению в нем гомеостаза (сдвиг рН в кислую сторону).

Наибольшие возможности для ресинтеза АТФ имеет аэробное окисление (практически неограниченное время при адекватном поступлении кислорода и продуктов окисления). Но это найінерційніший путь, так как его ферментная система активируется медленно. На максимальный уровень активности она выходит через 2-3 мин от начала мышечной работы. Кроме митохондриальных ферментов самого мышечного волокна обеспечения указанного механизма ресинтеза АТФ требует адекватного снабжения мышц кислородом и исходными продуктами. К тому же производительность (количество синтезированной АТФ за единицу времени) аэробного окисления неодинакова в зависимости от соединения, окисляется: при окиснюванні углеводов энергии.

Естественно, что указанные возможности путей ресинтеза АТФ определяют работоспособность мышц.

Коэффициент полезного действия и теплообразование при мышечной работе

Согласно первому закону термодинамики (закон сохранения энергии) химическая энергия превращается в мышце, равна сумме механической энергии (работы) и теплотворность. Гидролиз одного моля АТФ обеспечивает получение 48 кДж энергии. Лишь 40-45 % ее превращается в механическую энергию, а остальные 55-60 % превращаются в на первоначальное тепло. Однако в природных условиях механическая эффективность мышечной деятельности, или коэффициент полезного действия, не превышает 20-30 %. Это обусловлено тем, что не вся энергия АТФ в мышце идет на собственно мышечное сокращение: часть ее расходуется на процессы восстановления. Следовательно, чем выше интенсивность мышечной работы, то более активные процессы теплообразование.

Типы и режимы мышечных сокращений

В естественных условиях оба конца мышцы прикрепляются с помощью сухожилий к костям и при сокращении притягивают их друг к другу. Если один конец мышцы (сустав) закреплен, то к нему подтягивается другой (рис. 23). Когда на этом конце мышцы прикреплен груз, который мышца поднять не в СОСТОЯНИИ, то он только напрягается, в таком случае его длина не меняется. Случаются и такие состояния, когда мышца постепенно увеличивается в длину (груз тяжелее, чем подъемная сила мышцы, или необходимо медленно опустить груз).

В экспериментальных условиях можно выделить один мускул, одно волокно и даже одну актоміозинову нить с нервом, иннервирует, или без него. Если закрепить один конец в штативе неподвижно, а к другому подвесить груз или устройство для регистрации, можно записать сокращение мышцы - міограму.

Вследствие этого различают следующие типы мышечных сокращений:

o ізотонічне (концентрическое) - сокращение мышц с укорочением при сохранении постоянного напряжения;

o изометрическое, когда длина мышцы не изменяется (напряжение);

o эксцентричное (плиометрическая), когда мышца удлиняется.

Как правило, большинство естественных сокращений мышц смешанные, то есть анізотонічного типа, когда мышца укорачивается в случае повышения напряжения.

На рис. 24, а приведены кривую одиночного сокращения. На ней можно различить фазы сокращения и расслабления. Вторая фаза более длительная. Время одного сокращения даже одиночного волокна значительно превышает время существования ПД.

Рис. 24. Разнообразные режимы сокращения мышц:

а - одиночные сокращения; в - неполный тетанус; г г - полный тетанус

Рис. 23. Взаимодействие мышц-сгибателей (а) и мышц-разгибателей (б)

Амплитуда одиночного сокращения изолированного мышечного волокна не зависит от силы раздражения, а подчиняется закону "все или ничего". В отличие от этого на сплошном мышце можно получить "лестница" (лестница Боудича): что большей силы (до определенной величины) раздражение, тем сильнее сокращение. Дальнейшее увеличение силы раздражения не влияет на амплитуду сокращения мышцы. Указанную закономерность прослеживают как при раздражении через нерв, так и в случае раздражения самой мышцы. Это обусловлено тем, что практически все мышцы (и нервы) смешанные, то есть состоят из множества двигательных единиц (РО), имеющих различную возбудимость.

Двигательная единица

Одиночное нервное волокно мотонейрона и мышечные волокна, что им иннервируются, составляют одну двигательную единицу (рис. 25). В большинстве скелетных мышц к двигательной единицы входит несколько сотен (даже тысяч) мышечных волокон. Даже в очень маленьких мышцах, от которых требуют высокой точности движений (глаз, кисти), в составе двигательной единицы может насчитываться 10-20 мышечных волокон. С функциональной точки зрения различают несколько типов двигательной единицы, которые можно сгруппировать следующим образом: быстрые и медленные. Функциональные их различия обусловлены соответствующими структурными особенностями, к тому же как на уровне сравнительно грубой морфологии, так и тонкого биохимического дифференцирования. Различные типы двигательных единиц отличают мышечные части, так и нервные волокна. Эти отличия и обеспечивают соответствующее функциональное проявление каждого типа двигательных единиц. Быстрые и медленные отличаются возбудимостью, скоростью проведения импульсов аксоном, оптимальной частотой импульсации и устойчивостью к утомлению после выполнения работы. К тому же в каждом типе мотонейрон и мышечные волокна как партнеры соединены друг с другом, что и обеспечивает их функциональные особенности.

Мотонейроны. Возбудимость или чувствительность к силе действующего раздражителя, мотонейронов одного и того же мышцы находится в обратной зависимости

Рис. 25.

1 - тело мотонейрона; 2 - ядро; С - дендриты; 4 - аксон; 5 - миелиновая оболочка аксона; 6 - концевые веточки аксона; 7 - нервно-мышечные синапсы

от размеров их тела: чем меньше мотонейрон, тем выше его возбудимость, то есть при меньшей силе раздражителя в них появляется ПД. Маленькие мотонейроны иннервируют сравнительно незначительное количество медленных мышечных волокон, большие - быстрые мышечные волокна, которых в одной двигательной единицы, как правило, много.

От величины нейрона зависит диаметр аксона и скорость проведения возбуждения по нему: она выше в больших мотонейронах. Кроме того, в таких мотонейронах могут возникать нервные импульсы с большой частотой. Следовательно, за счет изменения частоты импульсации мотонейрона мышечные волокна, входящие в состав соответствующей двигательной единицы, могут получать высокий частотный диапазон ПД, а это обусловит и большую силу их сокращения.

Каждому мотонейрону соответствует и структура мышечных волокон двигательной единицы. Так, скорость сокращения мышечного волокна находится в прямой зависимости от активности актоміозинової Атфазы (количества актинових и міозинових филаментов): чем выше ее активность, тем быстрее образуются актоміозинові мостики, и следовательно, выше скорость сокращения. Плотность "упаковка" актоміози новых филаментов в быстрых мышечных волокнах выше, чем в медленных. Кроме того, в скором волокне более выражен саркоплазматический ретикулум (депо кальция). Поэтому во время поступления ПД:

o скрытый время до начала сокращения меньший;

o плотность кальциевого насоса выше.

Итак, мышца быстрее сокращается и расслабляется. В быстром мышечном волокне повышена активность ферментов гликолиза, которые обеспечивают быстрое восстановление АТФ, которая расходуется во время выполнения интенсивных мышечных сокращений.

В отличие от этого в медленном мышечном волокне выше активность ферментов окисления, благодаря которым восстановление АТФ происходит хоть и медленнее, но зато экономически выгоднее. Так, если из 1 моля глюкозы в результате гликолиза образуется лишь 2-3 моля АТФ, то в случае аэробного окисления - 36-38 моль АТФ. Кроме того, во время гликолиза образуются недоокиснені субстраты (например, молочной кислоты), что "закиснюють" мышцу и снижают его работоспособность. Повышению работоспособности, улучшению условий окисления способствуют еще две структурные различия медленных мышечных волокон:

1) медленные волокна лучше, чем быстрые, обеспечиваются кислородом благодаря большей плотности кровеносных капилляров, окружающих их;

2) внутри медленных волокон содержится большое количество миоглобина, который придает им красную окраску и являются депо кислорода, что может применяться для окисления в момент мышечного сокращения, когда поступление кислорода с кровью затрудняется из-за сжатия кровеносных сосудов мышцей, которая сокращается.

Быстрые мышечные волокна имеют короткий период сокращения - до 7,5 мс, а медленные - довгий - до 100 мс.

Таким образом, подытоживая функциональные различия двигательных единиц, можно отметить: медленные двигательные единицы отличаются легкой возбудимостью, меньшей силой и скоростью сокращения при малой утомляемости и высокой выносливости. Быстрые двигательные единицы имеют противоположные свойства.

Исследования последних лет доказали, что каждый человек имеет врожденные различия процентного соотношения быстрых и медленных волокон в скелетных мышцах. Например, во внешнем мышце бедра диапазон колебания количества медленных волокон составляет от 13 до 96 %. Преимущество медленных волокон обеспечивает "стайерские", а малый их процент - "спринтерские" возможности спортсмена. К тому же компоновка различных мышц одного человека также различается. Так, в среднем содержание медленных волокон в триголовому мышце плеча составляет 33 %, двуглавому - 49, переднем великогомілковому - 46, камбало-образном - 84 %.

Суммация сокращения и тетанус

В естественных условиях жизни человека одиночных сокращений мышц не бывает. Обычно к мышцам нервные импульсы по мотонейронах поступают "пачками", то есть подряд по несколько штук с относительно незначительными временными промежутками. Это приводит к формированию не одного, а нескольких ПД и в самом скелетном мышце. Если на мышцу действуют не одиночные импульсы (ПД), а такие, которые быстро идут один за одним, то сократительные эффекты суммируются, и в результате этого мышца сокращается длительное время (см. рис. 24). К тому же если дальнейшие раздражители поступают в начальный момент расслабления, міографічна кривая будет зубчатой, а если до начала расслабления-без зазубрин. Такой тип сокращений называют тетанусом.

Различают зубчатый и непосмугований тетануси. Во время тетанусу не только удлиняется время сокращения, но и растет его сила. Это происходит из-за того, что в ответ на первый ПД успеют произойти лишь незначительные "шаги". Окончательный резерв создает возможность увеличить силу сокращения во время поступления дальнейших ПД. В этом случае концентрация кальция (количество актоміозинових мостиков) в таком мышечном волокне может быть такой же, как и во время одиночного сокращения.

Тетанічне сокращение вероятно прежде всего потому, что мембрана мышечного волокна способна проводить довольно частые ПД (более 100 в 1 с), поскольку рефрактерный период в скелетных мышцах гораздо короче собственно одиночного сокращения. Следовательно, когда к мышце поступают следующие ПД, он снова становится чувствителен к ним.

Частота и сила раздражителя, необходимые для выведения мышечного волокна в тетанус, не для всех мышц одинаковы, а зависят от особенностей их двигательной единицы. Продолжительность одного сокращения медленного мышечного волокна может достигать 100 мс, а быстрого - 10-30 мс. Поэтому для получения непосмугованого тетанусу в медленных волокнах достаточно 10-15 имп.1с, а быстрые нуждаются до 50 имп.1с и выше.

В природных условиях почти никогда не случается, чтобы все мышечные волокна находились в сокращенном состоянии. Поэтому при произвольном сокращении сила мышц меньше, чем в случае искусственного раздражения. На этом принципе основан механизм резкого повышения силы сокращения мышц в экстремальной ситуации: возрастает синхронность нервных импульсов, поступающих к различной двигательной единицы. Один из механизмов, обеспечивающих увеличение мышечной силы, например спортсмена во время тренировки, - рост синхронности сокращения отдельных двигательных единиц.

Максимальный ритм возбуждения. Предельный ритм возбуждения, обусловленный понятием лабильность, всех возбудимых тканей зависит от продолжительности периода, необходимого для восстановления чувствительности натриевых каналов после предыдущего раздражения, то есть от периода рефрактерности. Лабильность двигательной единицы, состоящий из трех структур (нерва, синапса, мышцы), определяют наиболее "узкой" звеном-синапсом, поскольку именно он имеет минимальную частоту передачи возбуждения. Мотонейроны, даже самые маленькие, способны проводить более 200 имп.1с, мышечные волокна-более 100 имп.1с, а нервно-мышечный синапс - меньше чем 100 имп.1с.

Функциональная характеристика скелетных мышц

Силу мышцы определяют силой тяги на ее концах. Максимальная сила тяги развивается во время изометрического сокращения мышцы при соблюдении следующих условий: а) активации всех двигательных единиц, из которых состоит эта мышца; б) начала сокращения мышцы при длине покоя; в) режима полного тетанусу во всех двигательных единиц.

Рис. 26. (по А.А. Ухтомским)

Для измерения силы мышцы определяют либо максимальный груз, который он сможет поднять, либо максимальное напряжение, которое он сможет развить в условиях изометрического сокращения. (Одиночное мышечное волокно способно развить напряжение 100-200 мг.) В теле человека содержится около 30 млн мышечных волокон и теоретически, если бы все они тянули в одну сторону, то создали бы напряжение до 30 т. Кроме того, необходимо учитывать еще и такие обстоятельства. Во-первых, сила различных мышечных волокон несколько отличается: быстрые двигательные единицы сильнее медленных. Во-вторых, сила мышцы зависит от ее поперечного сечения: чем больше объем мышцы, то он сильнее. К тому же в зависимости от хода волокон различают мышцы косые и прямые. Косой ход волокон обеспечивает большое количество мышечных волокон, проходящих через ее поперечное сечение, вследствие чего сила такого мышцы больше. Поэтому различают физиологический и анатомический поперечника мышцы: физиологический поперечник перпендикулярен к направлению мышечных волокон, а анатомический - до длины мышцы (рис. 26). Естественно, что в мышц с продольным направлением волокон оба названных поперечника совпадают, а в перистых - физиологический поперечник больше, чем анатомический, поэтому за одинакового анатомического поперечника последние сильнее. Например, относительная сила мышц человека (на 1 см2 площади поперечного сечения):

o голеностопный мышца - 5,9 кг;

o мышцу - сгибатель плеча - 8,1 кг;

o жевательный мускул - 10,0 кг;

o двуглавая мышца плеча - 11,4 кг;

o трехглавую мышцу плеча - 16,7 кг.

В естественных условиях на проявление мышечной силы влияют не только указанные выше три условия, но и угол, под которым мышца подходит к кости. Что больший угол прикрепления, то лучшие условия для проявления силы. Если мышца подходит к кости под прямым углом, почти вся его сила расходуется на обеспечение движения, а если под острым - часть силы идет на обеспечение движения, остальные - на сжатие рычага.

Утомление

Во время длительной или интенсивной мышечной работе развивается утомление, которое выражается вначале в снижении работоспособности, а затем и в прекращении работы. Утомление характеризуется соответствующими изменениями, которые возникают не только в мышцах, но и в системах, обслуживающих их.

Утомлением называют состояние, развивающееся вследствие работы и проявляется ухудшением двигательных и вегетативных функций организма, их координации. В этом случае снижается работоспособность, появляется чувство устали (психологическое состояние). Утомление - целостная реакция всего организма. Поэтому, когда ниже будет рассматриваться утомление нерва, синапса, мышц, необходимо помнить об условности этих понятий. Правильнее говорить о некоторых механизмах, определяющих "работоспособность" основных звеньев двигательной единицы - нервных, мышечных волокон, синапса.

Утомление нервного волокна. В природных условиях нервное волокно практически не устает. Проведение нервного импульса требует затраты энергии только для работы К+-насоса, что достаточно енергоекономічно. Системы ресинтеза АТФ вполне справляются с обеспечением энергией нервного волокна.

Утомление нервно-мышечного синапса. Работоспособность, то есть способность проводить возбуждение, у синапса значительно ниже, чем у нервного волокна. Это может быть следствием двух явлений. Депрессия передачи возбуждения в синапсе может спричинюватися истощением значительной части медиатора или ослаблением его восстановления при слишком высокой частоте ПД, поступающих нервным волокном. Кроме того, при интенсивной мышечной деятельности недоокиснені продукты (активно образуются во время гликолиза) снижают чувствительность постсинаптичної мембраны к медиатору АХ. Это приводит к снижению амплитуды каждого ПКП и при чрезмерном снижении возникновения ПД вообще становится невозможным.

Утомление мышечного волокна. Нарушение возбудимости и сократимости мышечного волокна в первую очередь обусловлено нарушением его энергетики, то есть механизмов ресинтеза АТФ. В этом случае решающим моментом становится интенсивность мышечной работы. Сверхвысокая ее активность связана с дефицитом креатинфосфокіназного пути или накоплением недоокисленных продуктов во время гликолиза. Последнее, с одной стороны, снижает чувствительность постсинаптичної мембраны, с другой - сдвигает рН саркоплазми в кислую сторону, что само по себе тормозит активность гликолитических ферментов. Все это и вызывает быстрое развитие утомления при интенсивной мышечной работе. Утомление во время длительной малоінтенсивної работы развивается медленно, что связано с нарушением механизмов регуляции со стороны центральных отделов нервной системы.

Поделиться: