Самый интересный факт о химии. Органическая химия: интересные факты

Наверное, каждый в школе изучал важные факты в химии. При этом не каждый знает, что химия окружает нас повсюду. Невозможно представить себе жизнь современного человека без использования химических элементов, которые несут большую пользу человечеству. Кроме того, интересные факты о химии в жизни человека помогут больше узнать об этой удивительной и полезной науке. Каждый должен узнать о химических элементах и их неоценимой пользе для человека. Далее более подробно рассмотрим интересные факты по химии, и чем она полезна для жизнедеятельности человека.

1. Для обеспечения стандартного полета современного самолета необходимо около 80 тонн кислорода. Столько же кислорода производит 40 тысяч гектаров леса во время фотосинтеза.

2. Около двадцати граммов соли содержится в одном литре морской воды.

3. Длина 100 миллионов атомов водорода в одной цепи составляет один сантиметр.

4. Около 7 мг золота можно извлечь из одной тонны вод Мирового океана.

5. Около 75% воды содержится в человеческом организме.

6. Масса нашей планеты увеличилась на один миллиард тонн за последние пять столетий.

7. К тончайшей материи, которую может увидеть человек, относятся стенки мыльного пузыря.

8. 0.001 секунды — скорость лопание мыльного пузыря.

9. При температуре 5000 градусов Цельсия железо превращается в газообразное состояние.

10. Солнце за одну минуту производит больше энергии, чем нужно нашей планете на целый год.

11. Гранит считается лучшим проводником звука по сравнению с воздухом.

12. Наибольшее количество химических элементов открыл Карл Шелли, ведущий канадский исследователь.

13. Более 7 килограммов весит самый большой самородок из платины.

15. Джозеф Блэк открыл углекислый газ в 1754 году.

16. Под действием соевого соуса происходит химическая реакция, которая заставляет убитого кальмара «танцевать» на тарелке.

17. За характерный запах фекалий отвечает органическое соединение скатол.

18. Петр Столыпин сдавал экзамен по химии у Дмитрия Менделеева.

19. Переход вещества из твердого в газообразное состояние в химии называется сублимацией.

20. Кроме ртути при комнатной температуре в жидкое вещество переходит франций и галлий.

21. Вода с содержанием метана может замерзнуть при температуре выше 20 градусов Цельсия.

22. К самому легкому газу относится водород.

23. Также водород является самым распространенным веществом в мире.

24. Одним из самых легких металлов считается литий.

25. В молодости Чарльз Дарвин был знаменит своими химическими открытиями.

26. Во сне Менделеев открыл систему химических элементов.

27. В честь стран было названо большое количество химических элементов.

28. В луке содержится вещество сера, которое вызывает слезы у человека.

29. В Индонезии люди добывают серу из вулкана, что приносит им большую прибыль.

30. Кроме того, серу также добавляют к косметическим средствам, которые предназначены для очищения проблемной кожи.

31. Ушная сера защищает человека от вредных бактерий и микроорганизмов.

32. Французский исследователь Б. Куртуа в 1811 году открыл йод.

33. Более 100 тысяч химических реакции ежеминутно происходит в головном мозге человека.

34. Серебро известно своими бактерицидными свойствами, поэтому способно очищать воду от вирусов и микроорганизмов.

35. Берцелиусом было впервые использовано название «натрий».

36. Железо можно легко превратить в газ, если его нагреть до 5 тысяч градусов Цельсия.

37. Половину массы Солнца составляет водород.

38. Около 10 миллиардов тонн золота содержат воды Мирового океана.

39. Когда-то было известно только семь металлов.

40. Эрнест Резерфорд был первым, кому вручили Нобелевскую премию по химии.

41. Монооксид дигидрогена входит в состав кислотных дождей и опасен для всех живых организмов.

42. Сначала платина стоила дешевле серебра из-за своей тугоплавкости.

43. Геосмин — это вещество, которое вырабатывается на поверхности земли после дождя, вызывая характерный запах.

44. В честь шведского села Иттербю были названы такие химические элементы, как иттербий, иттрий, эрбий и тербий.

45. Александр Флеминг впервые открыл антибиотики.

46. Птицы помогают определить место утечки газа, благодаря наличию в нем запаха сырого мяса, который добавляется искусственным способом.

47. Чарльз Гудьир впервые изобрел резину.

48. Из горячей воды легче получить лед.

49. Именно в Финляндии самая чистая вода в мире.

50. Самым легким среди благородных газов считается гелий.

51. В изумрудах содержится бериллий.

52. Чтобы огонь покрасить в зеленый цвет используют бор.

53. Азот может вызвать помутнение сознания.

54. Неон способен светиться красным цветом, если через него пропустить ток.

55. В океане содержится большое количество натрия.

56. В компьютерных микросхемах используют кремний.

57. Для изготовления спичек используют фосфор.

58. Хлор может вызвать аллергические реакции органов дыхания.

59. В лампочках используют аргон.

60. Калий может гореть фиолетовым огнем.

61. Большое количество кальция содержится в молочных продуктах.

62. Для изготовления бейсбольной биты используют скандий, что улучшает их ударопрочность.

63. Титан используют для создания украшений.

64. Чтобы сделать сталь крепче используют ванадий.

65. Раритетные машины достаточно часто украшали хромом.

66. К интоксикации организма может привести марганец.

67. Кобальт используют для изготовления магнитов.

68. Для производства стекла зеленого цвета используют никель.

69. Медь прекрасно проводит ток.

70. Для увеличения эксплуатационного срока стали к ней добавляют цинк.

71. Ложки, содержащие галлий, могут расплавиться в горячей воде.

72. В мобильных телефонах используют германий.

73. К токсичному веществу относится мышьяк, из которого изготавливают яд для крыс.

74. Бром может расплавиться при комнатной температуре.

75. Для производства красных фейерверков используют стронций.

76. Для производства мощных инструментов используют молибден.

77. В рентгене используют технеций.

78. В ювелирном производстве используют рутений.

79. Родий имеет невероятно красивый естественный блеск.

80. В некоторых пигментных красках используют кадмий.

81. Индий может издавать резкий звук при сгибании.

82. Для производства ядерного оружия используют уран.

83. В детекторах дыма используют америций.

84. Эдуард Бенедиктус случайно изобрел ударопрочное стекло, что сегодня широко используется в различных отраслях.

85. Самым редким элементом атмосферы считается радон.

86. Вольфрам имеет самую высокую температуру кипения.

87. Ртуть имеет самую низкую температуру плавления.

88. Аргон был открыт английским физиком Реле в 1894 году.

89. Канарейки чувствуют в воздухе наличие метана, поэтому их используют для поиска утечки газа.

90. Небольшое количество метанола может привести к слепоте.

91. Цезия относится к самому активному металлу.

92. Практически со всеми веществами активно реагирует фтор.

93. Около тридцати химических элементов входят в состав человеческого организма.

94. В повседневной жизни человек часто сталкивается с гидролизом солей, например, во время стирки белья.

95. Из-за реакции окисления на стенах ущелий и карьеров появляются цветные рисунки.

96. Невозможно отстирать в горячей воде пятна от белковых продуктов.

97. Сухой лед является твердой формой углекислого газа.

98. В земную кору входит наибольшее число химических элементов.

99. С помощью углекислого газа можно получить большое количество других веществ.

100. К одному из самых легких металлов относится алюминий.

10 фактов из жизни химиков

1.Жизнь химика Александра Порфирьевича Бородина связана не только с химией, но и с музыкой.

2.Эдуард Бенедиктус – химик из Франции, который сделал открытие случайно.

3.Семен Вольфкович занимался опытами, связанными с фосфором. Когда он с ним работал, одежда тоже пропитывалась фосфором, а поэтому, возвращаясь поздно ночью домой, профессор излучал голубоватое свечение.

4.Александр Флеминг открыл антибиотики случайно.

5.Знаменитый химик Дмитрий Менделеев был 17-ым ребенком в семье.

6.Углекислый газ был открыт английским ученым Джозефом Пристли.

7.Дедушка Дмитрия Менделеева по отцовской линии был священником.

8.Знаменитый химик Сванте Аррениус с ранних лет становился полным.

9.Р. Вуд, который считается химиком из Америки, изначально работал служителем в лаборатории.

10.Первый русский учебник «Органическая химия» был создан Дмитрием Менделеевым в 1861 году.

В один из дней 1903-го года французский химик Эдуард Бенедикт готовился к очередному эксперименту в лаборатории – он не глядя протянул руку за чистой колбой, стоявшей на полке в шкафу, и уронил ее.

Взяв метлу и совок чтобы убрать осколки, Эдуард подошел к шкафу и обнаружил с удивлением, что колба хоть и разбилась, но все ее фрагменты остались на месте, их соединяла друг с другом какая-то пленка.

Химик позвал лаборанта – тот был обязан мыть стеклянную посуду после опытов и попытался выяснить, что было в колбе. Оказалось, что эта емкость использовалась несколько дней назад в ходе экспериментов с нитратом целлюлозы (нитроцеллюлозой) – спиртовым раствором жидкого пластика, небольшое количество которого после испарения спирта осталось на стенках колбы и застыло пленкой. А поскольку слой пластика был тонок и достаточно прозрачен, лаборант решил, что емкость пуста.

Спустя пару-тройку недель после истории с не разлетевшейся на осколки колбой, Эдуарду Бенедикту попалась на глаза заметка в утренней газете, в которой описывались последствия лобовых столкновений нового в те годы вида транспорта – автомобилей. Ветровое стекло разлеталось осколками, нанося водителям множественные порезы, лишая зрения и нормальной внешности. Фотографии пострадавших произвели на Бенедикта тягостное впечатление и тут он вспомнил о «небьющейся» колбе. Бросившись в лабораторию, следующие 24 часа своей жизни французский химик посвятил созданию небьющегося стекла. Он наносил нитроцеллюлозу на стекло, сушил слой пластика и бросал композит на каменный пол – снова, снова и снова. Так Эдуард Бенедикт изобрел первое стекло-триплекс.

Многослойное стекло

Стекло, образованное несколькими слоями из силикатного или органического стекла, соединенными особой полимерной пленкой, называется триплексом. В качестве полимера, соединяющего стекла, обычно используется поливинилбутираль (PVB). Существует два основных способа производства многослойного стекла триплекс – заливной и ламинационный (автоклавный или вакуумный).

Технология заливного триплекса. Листы флоат-стекла нарезаются по размерам, при необходимости им придается изогнутая форма (выполняется моллирование). После тщательно очистки поверхностей стекла укладываются друг на друга с тем, чтобы между ними оставался просвет (полость) высотой не более 2 мм – дистанция фиксируется с помощью особой резиновой полосы. Совмещенные листы стекла выставляются под углом к горизонтальной поверхности, в полость между ними заливается поливинилбутираль, резиновая вставка по периметру препятствует его вытеканию. Чтобы достичь равномерности полимерного слоя, стекла помещают под пресс. Окончательное соединение листов стекла за счет отверждения поливинилбутираля происходит под ультрафиолетовым излучением в специальной камере, внутри которой поддерживается температура в диапазоне от 25 до 30 о С. После формирования триплекса, из него извлекается резиновая лента и производится обточка кромки.

Автоклавная ламинация триплекса. После резки листов стекла,
обработки кромок и моллирования, они очищаются от загрязнений. По окончании подготовки листов флоат-стекла, между ними укладывается PVB пленка, сформированный «сэндвич» помещается в пластиковую оболочку – в вакуумной установке из пакета полностью выводится воздух. Окончательное соединение слоев «сэндвича» происходит в автоклаве, под давлением 12,5 бар и температурой 150 о С.

Вакуумная ламинация триплекса. По сравнению с автоклавной технологией, вакуумная триплексация выполняется при меньших давлении и температуре. Последовательность рабочих операций у них схожа: нарезка стекла, придание изогнутой формы в моллирующей печи, обточка кромок, тщательная чистка и обезжиривание поверхностей. При формировании «сэндвича» между стеклами помещается этиленвинилацетатная (EVA) или PVB пленка, затем их помещают в вакуумную машину, предварительно уложив в пластиковый мешок. Спаивание стеклянных листов происходит именно в этой установке: откачивается воздух; «сэндвич» нагревается до максимальных 130 о С, происходит полимеризация пленки; триплекс охлаждается до 55 о С. Полимеризация выполняется в разреженной атмосфере (- 0,95 бар), при снижении температуры до 55 о С давление в камере выравнивается до атмосферного и, как только температура многослойного стекла составит 45 о С, формирование триплекса завершается.

Многослойное стекло, созданное по заливной технологии, более прочное, но менее прозрачное, чем ламинированный триплекс.

Из стеклянных сэндвичей, выполненных по одной из триплекс-технологий, создаются лобовые стекла автомашин, они необходимы для остекления высотных зданий, в построении перегородок внутри офисов и жилых домов. Триплекс популярен у дизайнеров – изделия из него являются неотъемлемым элементом стиля модерн.

Но, несмотря на отсутствие осколков при ударе по многослойному «сэндвичу» из силикатного стекла и полимера, пулю он не остановит. А вот рассмотренные ниже триплекс-стекла сделают это вполне успешно.

Бронированное стекло – история создания

В 1928 году немецкие химики создают новый материал, немедленно заинтересовавший авиаконструкторов – плексиглас. В 1935 году руководителю НИИ «Пластмасс» Сергею Ушакову удалось достать в Германии образец «гибкого стекла», советские ученые занялись его исследованием и разработкой технологии серийного производства. Спустя год производство органического стекла из полиметилметакрилата было начало на заводе «К-4» в Ленинграде. Одновременно были начаты эксперименты, направленные на создание бронированного стекла.

Закаленное стекло, созданное в 1929 году французской компанией SSG, в середине 30-х годов под названием «сталинит» выпускалось в СССР. Технология закалки заключалась в следующем – листы самого обычного силикатного стекла нагревались до температур в диапазоне от 600 до 720 о С, т.е. выше температуры размягчения стекла. Затем лист стекла подвергался быстрому охлаждению – потоки холодного воздуха за несколько минут понижали его температуру до 350-450 о С. Благодаря закалке стекло получало высокие прочностные свойства: сопротивляемость удару возрастала в 5-10 раз; прочность на изгиб – не менее чем в два раза; термостойкость – в три-четыре раза.

Однако, несмотря на высокую прочность, «сталинит» не годился для моллирования с целью формиров
ания фонаря кабины самолета – закалка не позволяла его гнуть. Кроме того закаленное стекло содержит в себе значительное количество зон внутреннего напряжения, легкий удар по ним приводил к полному разрушению всего листа. «Сталинит» нельзя резать, обрабатывать и сверлить. Тогда советские конструкторы решили комбинировать пластичное оргстекло и «сталинит», превратив их недостатки в достоинство.

Предварительно формованный фонарь самолета покрывался небольшими плитками из закаленного стекла, клеем служил поливинилбутираль.

Прозрачная броня

Современное бронестекло, также называемое прозрачной броней, представляет собой многослойный композит, образованный листами силикатного стекла, оргстекла, полиуретана и поликарбоната. Также в состав бронированного триплекса могут входить кварцевое и керамическое стекло, синтетический сапфир.

Европейские производители бронестекол выпускают в основном триплекс, состоящий из нескольких «сырых» флоат-стекол и поликарбоната. К слову, незакаленное стекло в среде компаний, выпускающих прозрачную броню, называется «сырым» - в триплексе с поликарбонатом применяется именно «сырое» стекло.

Лист поликарбоната в таком многослойном стекле устанавливается на сторону, обращенную внутрь защищаемого помещения. Задача пластика заключается в гашении колебаний, вызванных ударной волной при столкновении пули с бронестеклом, чтобы избежать образования новых осколков в листах «сырого» стекла. Если поликарбонат в составе триплекса отсутствует, то ударная волна, движущаяся перед пулей, разобьет стекла еще до фактического ее соприкосновения с ними и пуля беспрепятственно пройдет через такой «сэндвич». Недостатки бронестекол с поликарбонатной вставкой (равно, как и с любым полимером в составе триплекса): значительный вес композита, особенно по классам 5-6а (достигает 210 кг за м 2); низкая стойкость пластика к абразивному износу; отслоение поликарбоната со временем из-за температурных перепадов.

Другое, перспективное направление в создании прозрачной бронибазируется на ином пр
инципе. Лист прозрачного пластика устанавливается в триплекс все также последним, а первыми монтируются вставки из лейкосапфира, керамического или кварцевого стекла – именно они должны встретить пулю. Лицевой слой триплекса, образованный перечисленными сверхтвердыми материалами, ломает либо плющит пулю, средний слой из термически или химически упрочненного стекла удержит поврежденную внутри стеклянного «сэндвича», а последний, пластиковый слой – погасит ударную волну и импульс от первичных осколков, не позволяя образовываться вторичным осколкам. Для защиты поликарбоната от абразивного износа, на него наносится пленка типа stop shield. Преимущества такого бронированного многослойного стекла – в 3-4 раза меньший вес и толщина, чем у триплекса из «сырого» стекла. Недостаток – высокая стоимость.

Кварцевое стекло. Производится из оксида кремния (кремнезема) природного происхождения (кварцевого песка, горного хрусталя, жильного кварца) или искусственно синтезированной двуокиси кремния. Обладает высокой термостойкостью и светопропусканием, его прочность выше, чем у силикатного стекла (50 H/мм 2 против 9,81 H/мм 2).

Керамическое стекло. Выполняется из оксинитрида алюминия, разработано в США для нужд армии, запатентованное название – ALON. Плотность этого прозрачного материала выше, чем у кварцевого стекла (3,69 г/см 3 против 2,21 г/см 3), прочностные характеристики также высоки (модуль Юнга – 334 ГПа, средний предел напряжения при изгибе – 380 МПа, что практически в 7-9 раз превышает аналогичные показатели стекол из оксида кремния).

Искусственный сапфир (лейкосапфир). Представляет собой монокристалл из оксида алюминия, в составе бронестекла придает триплексу максимальные прочностные свойства из возможных. Некоторые его характеристики: плотность – 3,97 г/см 3 ; средний предел напряжения при изгибе – 742 МПа; модуль Юнга – 344 ГПа. Недостаток лейкосапфира заключается в его значительной стоимости из-за высоких производственных энергозатрат, потребностей в сложной механической обработке и полировке.

Химически упрочненное стекло. «Сырое» силикатное стекло погружают в ванну с водным раствором фтороводородной (плавиковой) кислоты. После химической закалки стекло становится в 3-6 прочнее, его ударная вязкость возрастает шестикратно. Недостаток – прочностные характеристики упрочненного стекла ниже, чем у термически закаленного.

В настоящее время для защиты жилых домов в основном используются многослойные стекла типа "триплекс".

Наша фирма также производит установку многослойных небьющихся стекол в жилые и другие помещения.

Случается, что ученые тратят годы и даже десятилетие для того, чтобы представить миру новое открытие. Однако, бывает и по-другому – изобретения появляются неожиданно, в результате неудачного опыта или простой случайности. В это сложно поверить, но многие устройства и препараты, изменившие мир, были изобретены совершенно случайно.
Предлагаю наиболее известные из таких случайностей.

В 1928 заметил, что одна из пластиковых тарелок с болезнетворными бактериями стафилококка в его лаборатории покрылась плесенью. Тем не менее, Флеминг покинул лабораторию на выходные, так и не вымыв грязную посуду. После выходных он вернулся к своему эксперименту. Он изучил тарелку под микроскопом и обнаружил, что плесень уничтожила бактерии. Эта плесень и оказалась основной формой пенициллина. Это открытие считается одним из величайших в истории медицины. Значение открытия Флеминга стало понятным лишь в 1940, когда были начаты массовые исследования нового типа лекарств-антибиотиков. Благодаря этому случайному открытию были спасены миллионы жизней.

Небьющееся стекло
Небьющееся стекло широко используется в автомобильной промышленности и строительстве. Сегодня оно повсюду, но, когда французский ученый (а также художник, композитор и писатель) Эдуард Бенедиктус в 1903 году случайно уронил на пол пустую стеклянную колбу и она не разбилась, что его очень удивило. Как оказалось, до этого в колбе хранился раствор коллодия, раствор испарился, но стенки сосуда были покрыты его тонким слоем.
В то время во Франции интенсивно развивалось автомобилестроение, и ветровое стекло изготовляли из обычного стекла, что было причиной множества травм водителей, на что и обратил внимание Бенедиктус. Он увидел реальную выгоду для спасения человеческих жизней в использовании его изобретения в автомобилях, но автомобилестроители посчитали его слишком дорогим для производства. И только годы спустя, когда во время Второй мировой войны триплекс (такое название получило новое стекло) использовался в качестве стекла для противогазов, в 1944 Volvo применила его и в автомобилях.

Кардиостимулятор
Кардиостимулятор, который сейчас спасает тысячи жизней, был изобретен по ошибке. Инженер Уилсон Грейтбэтч работал над созданием устройства, которое должно было записывать сердечный ритм.
Однажды он вставил в устройство неподходящий транзистор и обнаружил, что в электрической цепи возникли колебания, которые похожи на правильный ритм работы человеческого сердца. Вскоре ученый создал первый имплантируемый кардиостимулятор – прибор, который подает искусственные импульсы для работы сердца.

Радиоактивность
Радиоактивность была открыта случайно ученым Генри Беккерелем (Henri Becquerel).
Дело было в 186 году, когда Беккерель работал над исследованием фосфоресценции солей урана и недавно открытых рентгеновских лучей. Он провел серию экспериментов, для того, чтобы определить, могут ли флюорисцирующие минералы производить излучение при контакте с солнечным светом. Ученый столкнулся с проблемой – эксперимент проводился зимой, когда яркого солнечного света не хватало. Он завернул уран и фотопластинки в один пакет и принялся ждать солнечного дня. Вернувшись на работу, Беккерель обнаружил, что уран отпечатался на фотопластинке без солнечного света. В дальнейшем он вместе с Марией и Пьером Кюри (Curie) открыл то, что сейчас известно как радиоактивность, за что, вместе с ученой супружеской парой потом получил Нобелевскую премию.

Микроволновая печь
Микроволновая печь, она же «печь для разогрева попкорна», появилась на свет именно благодаря счастливому стечению обстоятельств. А все начиналось - кто бы мог подумать! - с проекта по разработке оружия.
Перси ЛеБарон Спенсер - инженер-самоучка - занимался разработкой радарных технологий в одной из крупнейших компаний мирового военно-промышленного комплекса Raytheon. В 1945, незадолго до окончания Второй мировой войны, он проводил исследования по улучшению качества радаров. Во время одного из опытов Спенсер обнаружил, что шоколадный батончик, который находился в его кармане, расплавился. Вопреки здравому смыслу, Спенсер немедленно отбросил мысль, что шоколад мог расплавиться под действием тепла тела - как истинный ученый, он ухватился за гипотезу, что на шоколад каким-то образом «повлияло» невидимое излучение магнетрона.
Любой здравомыслящий мужчина тут же остановился бы и понял, что «волшебные» тепловые лучи прошли в нескольких сантиметрах от его достоинства. Окажись рядом военные, они наверняка бы нашли достойное применение этим «плавящим лучам». Но Спенсер подумал о другом - он пришел в восторг от своего открытия и посчитал его настоящим научным прорывом.
После серии экспериментов была создана первая микроволновая печь весом около 350 кг с водяным охлаждением. Ее предполагалось использовать в ресторанах, самолетах и кораблях - т.е. там, где требовалось быстро разогревать пищу.

Вулканизированная резина
Едва ли вас шокирует известие о том, что резину для автомобильных покрышек изобрел Чарльз Гудийр - он стал первым изобретателем, имя которого получил конечный продукт.
Непросто было изобрести резину, способную выдерживать гонки на максимальное ускорение и автомобильные гонки, о которых стали мечтать все со дня создания первого автомобиля. Да и вообще, у Гудийра были все основания навсегда распрощаться с хрустальной мечтой юности - он то и дело попадал в тюрьму, лишился всех друзей и едва не уморил голодом собственных детей, неустанно пытаясь изобрести более прочную резину (для него это превратилось почти в навязчивую идею).
Итак, дело было в середине 1830-х. После двух лет неудачных попыток оптимизации и укрепления обычной резины (смешивания каучука с магнезией и известью) Гудийр и его семья вынуждены были искать убежище на заброшенной фабрике и удить рыбу для пропитания. Тогда-то Гудийр и сделал сенсационное открытие: он смешал каучук с серой и получил новую резину! Первые 150 мешков резины были проданы правительству и…
Ах, да. Резина оказалась некачественной и совершенно бесполезной. Новая технология оказалась неэффективной. Гудийр был разорен - в который раз!
Наконец, в 1839 Гудийр забрел в универсальный магазин с очередной порцией неудавшейся резины. Собравшиеся в магазине люди с интересом наблюдали за сумасшедшим изобретателем. Затем начали смеяться. В ярости Гудийр швырнул комок резины на горячую плиту.
Внимательно изучив обгоревшие остатки резины, Гудийр понял, что только что - совершенно случайно - изобрел способ производства надежной, эластичной, водостойкой резины. Так из огня родилась целая империя.

Шампанское
Многие знают, что шампанское придумал Дом Пьер Периньон, однако этот монах ордена Св. Бенедикта, живший в 17 веке, вовсе не намеревался делать вино с пузырьками, а совсем наоборот - он потратил годы, пытаясь это предотвратить, так как шипучее вино считалось верным признаком некачественного виноделия.
Изначально Периньон хотел угодить вкусам французского двора и создать соответствующее белое вино. Так как в Шампани было легче выращивать темный виноград, он придумал способ получения из него светлого сока. Но так как климат в Шампани относительно холодный, вино должно было бродить в течение двух сезонов, проводя второй год уже в бутылке. В результате получалось вино, наполненное пузырьками углекислого газа, от которых Периньон пытался избавиться, но безуспешно. К счастью, новое вино очень понравилось аристократии как французского, так и английского дворов.

Пластик
В 1907 году шеллак использовался для изоляции в электронной промышленности. Затраты на импорт шеллака, который изготавливали из азиатских жуков, были огромными, поэтому химик Лео Хендрик Бэкеланд (Leo Hendrik Baekeland) решил, что было бы неплохо изобрести альтернативу шеллаку. В результате экспериментов, он получил пластичный материал, который не разрушался при высоких температурах. Ученый думал, что изобретенный им материал может использоваться в производстве фонографов, однако, вскоре стало ясно, что материал может использоваться гораздо шире, чем предполагалось. Сегодня пластик используется во всех сферах промышленности.

Сахарин
Сахарин, известный всем худеющим заменитель сахара, был изобретен благодаря тому, что химик Константин Фальберг не имел полезной привычки мыть руки перед едой.
Дело было в 1879 году, когда Фальберг работал над новыми способами использования каменноугольной смолы. Закончив свой трудовой день, ученый пришел домой и сел ужинать. Еда показалась ему сладковатой, и химик спросил жену, зачем она добавила сахар в еду. Однако, жене еда сладкой не показалась. Фальберг понял, что на самом деле не еда сладкая, а его руки, которые он как всегда не помыл перед ужином. На следующий день ученый вернулся на работу, продолжил исследования, а затем запатентовал способ получения искусственного низкокалорийного подсластителя и начал его производство.

Тефлон
Тефлон, который облегчил жизнь домохозяек всего мира, тоже был изобретен случайно. Химик из компании DuPont Рой Планкетт изучал свойства фреона и для одного из опытов заморозил газообразный тетрафторэтилен. После заморозки ученый открыл емкость и обнаружил, что газ пропал! Планкетт встряхнул канистру и заглянул в нее – там он обнаружил белый порошок. К счастью для тех, кто хоть раз в жизни делал омлет, ученый заинтересовался порошком и продолжил его изучение. В результате и был изобретен тот самый тефлон, без которого невозможно представить себе современную кухню.

Вафельные рожки для мороженого
Эта история может послужить идеальным примером случайного изобретения и случайной встречи, оказавшей повсеместное влияние. А еще она достаточно вкусна.
До 1904 г. мороженое подавали на блюдцах, и только на Всемирной Ярмарке того года, проводимой в г. Сент-Луис, штат Миссури, два, казалось бы, никак не связанных пищевых продукта, оказались неразрывно связанными.
На этой особенно жаркой и душной Всемирной Ярмарке 1904 г., у палатки, продающей мороженое, дела шли настолько хорошо, что быстро кончились все блюдца. У палатки, расположенной по соседству, и торгующей Залабией - тонкими вафлями из Персии, дела шли не очень, и ее владелец придумал сворачивать вафли в конус, а сверху класть мороженое. Так и родилось мороженое в вафельном рожке, и в ближайшем будущем умирать оно, вроде бы, не собирается.

Синтетические красители
Звучит странно, но это факт – синтетическая краска была изобретена в результате попытки изобрести лекарство от малярии.
В 1856 году химик Уильям Перкин (William Perkin), работал над созданием искусственного хинина для лечения малярии. Новое лекарство от малярии он не изобрел, зато получил густую темную массу. Приглядевшись к этой массе, Перкин обнаружил,что она отдает очень красивым цветом. Так он изобрел первый химический краситель.
Его краситель оказался намного лучше любого натурального красителя: во-первых, ее цвет был намного ярче, во-вторых, она не выгорала и не смывалась. Открытие Перкина превратило химию в очень прибыльную науку.

Картофельные чипсы
В 1853 г. в ресторане г. Саратога, штат Нью-Йорк, особо капризный клиент (железнодорожный магнат Корнелиус Вандербильт) постоянно отказывался есть картофель фри, который ему подавали, жалуясь на то, что он был слишком толстым и влажным. После того, как он отказался от нескольких тарелок все более тонко нарезаемого картофеля, шеф-повар ресторана Джордж Крам решил ему отомстить и пожарил в масле несколько тонких как вафля ломтиков картофеля, и подал их клиенту.
Сначала Вандербильт начал говорить, что эта последняя попытка была слишком тонкой, и ее невозможно наколоть на вилку, но, попробовав несколько штук, он остался очень доволен, и все посетители ресторана захотели то же самое. В итоге в меню появилось новое блюдо: «Saratoga chips», которое вскоре уже продавалось по всему миру.

Наклейки Post-It
Скромные наклейки Post-It появились в результате случайного сотрудничества посредственного ученого и раздраженного прихожанина церкви. В 1970 г. Спенсер Сильвер, исследователь крупной американской корпорации 3М, работал над формулой сильного клея, но смог создать лишь очень слабый клей, который можно было снять практически без усилий. Он пытался продвинуть свое изобретение в корпорации, но никто не обратил на него внимание.
Четыре года спустя, Артур Фрай, сотрудник 3М и член церковного хора, был сильно раздражен тем фактом, что бумажки, которые он клал в свою книгу гимнов в качестве закладок, постоянно выпадали, когда книга была открыта. Во время одного богослужения он вспомнил про изобретение Спенсера Сильвера, и испытал прозрение (пожалуй, церковь - самое подходящее для этого место), а затем нанес немного слабого, но не повреждающего бумагу, клея Спенсера на свои закладки. Оказалось, что маленькие липкие пометки делают как раз то, что нужно, и он продал эту идею 3М. Пробное продвижение нового товара началось в 1977 г., и сегодня уже трудно представить жизнь без этих наклеек.

Одним из негативных следствий развития технологий в современном мире являются автокатастрофы. Каждый год они уносят жизни более 1 млн. человек, а более пятидесяти миллионов получают травмы различной степени тяжести. В процесс снижения количества жертв и травматизма на дорогах внес свою лепту французский химик Эдуард Бенедиктус.

В начале XX века Бенедиктус в ходе проведения экспериментов нечаянно зацепил колбу, которая, упав с полки, не разбилась вдребезги, а всего лишь растрескалась, сохранив изначальную форму. Этот эпизод заставил Эдуарда задуматься. В этом сосуде ранее хранился эфирно-спиртовой раствор нитрата целлюлозы, который испарившись, оставил на стенках колбы тончайший, совершенно не мешающий наблюдать за содержимым сосуда слой нитрата целлюлозы.

В те времена лобовые стекла автомашин изготавливали из совершенно обычного стекла, которое при аварии разлеталось на большое количество острейших осколков, серьезно ранивших водителя и пассажиров.

Именно один из таких случаев с аварией автомобиля, о котором Бенедиктус узнал из газет, заставил ученого вспомнить об уцелевшей колбе. Проведя несколько экспериментов с покрытием стекла нитратом целлюлозы, он нашел вариант, идеально подходивший для автомобильных стекол. Суть его была в следующем: слой нитрата целлюлозы помещался между двумя обычными стеклами. После нагревания такого «бутерброда», происходило плавление внутреннего слоя, и стекла надежно склеивались между собой.

Такие стеклопакеты выдерживали даже удар молотком, при этом они трескались, но не крошились на осколки и сохраняли первоначальную форму. Так, в 1909 году было изобретено и запатентовано Эдуардом Бенедиктусом стекло под названием «Triplex».

Приблизительно в то же время над проблемой создания безопасных стекол бился еще один ученый – англичанин Джон Вуд. Свой патент на изобретение специального стекла он получил в 1905 году. Однако в массовое производство стекло Вуда не пошло ввиду высокой стоимости расходных материалов. Суть его изобретения состояла в том, что вместо нитрата целлюлозы во внутреннем слое использовался дорогой каучук. Кроме того, конечный продукт немного терял свою прозрачность, что вызывало дискомфорт у водителей.

Поначалу изобретение Бенедиктуса тоже пришлось не по нраву производителям автомобилей, так как повышало его стоимость. Но оно было оценено военными. Стекла «триплекс» прошли боевое крещение во времена Первой мировой войны, ведь именно их использовали в противогазах.

В автомобильной промышленности первым триплексы внедрил Генри Форд. Это произошло в 1919 году. Понадобилось около 15 лет, чтобы и другие производители автомобилей стали применять триплексы. Такие стекла используют до сих пор.

Поделиться: