Методы контроля эффективности стерилизации. Как проводится контроль стерилизации? Методы контроля стерилизации изделий медицинского назначения

Стерилизация – это полное уничтожение микроорганизмов, их вегетативных форм с медицинского инструментария и предметов медицинского назначения.

Стерилизации подлежат все предметы, контактировавшие с раневой поверхностью, загрязненные кровью или инъекционными формами лекарственных препаратов, а также инструменты, которые при использовании могут повредить целостность слизистых оболочек.

Воздушный метод стерилизации (в сухожаровом шкафу) рекомендуется применять для сухих изделий из металла, стекла и силиконовой резины. Стерилизацию проводят в упаковке из бумаги мешочной непропитанной, бумаги мешочной влагопрочной, бумаги для упаковывания продукции на автоматах марки Е и крафт-бумаге или без упаковки (в открытых емкостях).

В соответствии с ОСТ 42-21-2-85 выделяют два режима стерилизации: 60 минут при 180°С и 150 минут при 160°С. При стерилизации в сухожаровом шкафу необходимо соблюдать несколько правил.
1. Изделия, подлежащие стерилизации, загружают в шкаф в количестве, допускающем свободную подачу горячего воздуха к стерилизуемому предмету.
2. Горячий воздух должен равномерно распределяться в стерилизационной камере.
3. Большие предметы следует класть на верхнюю металлическую решетку, чтобы они не препятствовали потоку горячего воздуха.
4. Стерилизуемые изделия необходимо укладывать горизонтально, поперек пазов кассет, полок, равномерно их распределяя.
5. Недопустимо загружать стерилизатор навалом. Не допускается перекрывать продувочные окна и решетку вентилятора.
6. Для контроля уровня температуры в шкаф медицинская сестра ставит флакон с сахарозой: при температуре 180 °С за 60 минут она должна превратиться из белого кристаллического порошка в темно-коричневую массу. Можно использовать термоиндикаторную ленту, которая изменяет свою окраску.

После стерилизации в открытой емкости медицинский инструментарий не хранится, а используется сразу. Шприцы в разобранном виде и две иглы укладывают в крафт-пакеты из пергамента или влагопрочной бумаги. Свободный конец пакета дважды подворачивают и заклеивают. На пакете указывают вместимость шприца и дату стерилизации. Стерильность в крафт-пакетах сохраняется в течение 3 суток.

Паровой метод стерилизации. При паровом методе (автоклавировании) стерилизация осуществляется увлажненным воздухом (паром) при повышенном давлении в специальных паровых стерилизаторах (автоклавах). В соответствии с ОСТ 42-21-2-85 выделяют два режима стерилизации:
1) 2 атм - 132 °С - 20 мин - рекомендуется для изделий из коррозионно-стойкого металла, стекла, текстильных материалов;
2) 1,1 атм - 120°С - 45 мин - рекомендуется для изделий из резины (катетеры, зонды, перчатки), латекса и некоторых полимерных материалов (полиэтилен высокой плотности, поливинил-хлорид).
Резиновые перчатки перед стерилизацией пересыпают тальком для предупреждения их склеивания. Между перчатками прокладывают марлю и каждую пару заворачивают отдельно. Простерилизованные материалы хранят в крафт-пакетах, двухслойной бязевой упаковке или стерилизационных коробках с фильтром (биксах) не более 3 суток.
Материал укладывают в бикс при стерилизации паром под давлением и хранении после стерилизации перевязочного материала, белья, шприцев или резиновых изделий (перчаток, систем для переливания инфузионных растворов). Нельзя подвергать стерилизации паром под давлением режушие инструменты, приборы с оптической системой.
Закладка в бикс осуществляется в определенной последовательности.
1. Отодвигают бандаж, открывают боковые отверстия бикса.
2. Протирают поверхность бикса изнутри и снаружи салфеткой, смоченной 0,5 % раствором аммиака.
3. Выстилают дно и стенки бикса пеленкой.
4. Необходимый материал укладывают рыхло в определенном порядке: в вертикальном положении, послойно или секторально.
5. В середину бикса кладут флакон с небольшим количеством бензойной кислоты или другого индикатора для контроля стерильности.
6. Углами пеленки закрывают содержимое бикса, сверху кладут еше один флакон с индикатором, несколько марлевых салфеток.
7. Плотно закрывают крышку бикса и привязывают к его ручке бирку из клеенки, на которой указывают номер отделения, количество и наименование предметов, находящихся в биксе.
8. Мосле стерилизации боковые отверстия бикса закрывают.
При получении бикса обращают внимание на его принадлежность, дату стерилизации и температуру. Стерильные биксы хранят в чехлах. Неоткрытый бикс без фильтра стерилен в течение 3 суток. Если бикс открывают для изъятия части материала, то оставленный материал считается относительно стерильным в течение рабочей смены. Следует помнить, что в биксе со стерильным материалом боковые отверстия должны быть закрыты, а с нестерильным - открыты.

Качество автоклавирования проверяют с помощью бензойной кислоты. В автоклав помещают флакон с кристаллами бензойной кислоты, которая плавится при температуре 132 °С и давлении 2 атм за 20 мин. Можно использовать термоиндикаторную ленту, которая при данном режиме меняет окраску.

Химический метод стерилизации (применение химических препаратов-дезинфектантов и антисептиков). Этот метод используют для изделий из полимерных материалов, резины, стекла, металлов. Стерилизация проводится в закрытых емкостях из стекла, пластмассы или покрытых эмалью (эмаль должна быть без повреждений) при полном погружении изделия в раствор. После этого изделие промывают стерильной водой. Простерилизованное изделие хранится в стерильной емкости (стерилизапионной коробке), выложенной стерильной простыней, в течение 3 суток. Для химической стерилизации в соответствии с ОСТ 42-21-2-85 применяют следующие режимы:
1) 6% раствор перекиси водорода:
при 18 о С в течение 360 мин;
50 °С в течение 180 мин;
2) 1 % раствор дезоксона-1 при 18 °С в течение 45 мин.

Необходимо соблюдать правила химической стерилизации.
1. Температура растворов в процессе стерилизации не поддерживается.
2. Раствор перекиси водорода можно использовать в течение 7 суток со дня приготовления при условии хранения в закрытой емкости в темном месте. Далее раствор можно применять только
при условии контроля содержания активно действующих веществ.
3. Раствор дезоксона-1 можно использовать в течение 1 сут.
4. Стерилизующие растворы применяют однократно.

В качестве модификации химического метода стерилизации применяются способы обработки изделий медицинского назначения газами или парами химических соединений.
В соответствии с ОСТ 42-21-2-85 предусмотрены три метода химической (газовой) стерилизации.
Смесь ОБ (окись этилена с бромистым метилом в соотношении 1,0: 2,5). Метод пригоден для стерилизации изделий из полимерных материалов, резины, стекла, металла, кардиостимуляторов,
медицинской оптики.
Стерилизация проводится в газовом стерилизаторе, микроанаэростате МИ. Изделия после предстерилизационной обработки подсушивают при комнатной температуре или температуре 35°С до исчезновения видимой влаги, после чего упаковывают в разобранном виде. Их стерилизуют в упаковке из двух слоев полиэтиленовой пленки толщиной 0,06 - 0,20 мм, пергаменте, бумаге мешочной непропитанной, бумаге мешочной влагопрочной, бумаге
для упаковывания продукции на автоматах марки Е при 55 °С в течение 240 - 360 мин. Срок хранения изделий, простерилизованных в упаковке из полиэтиленовой пленки, составляет 5 лет,
в пергаменте или бумаге - 20 сут.

Стерилизация смесью паров воды и формальдегида. Проводится в специальных стационарных формалиновых стерилизаторах. Метод пригоден для изделий из резины, полимерных материалов, металла и стекла. Стерилизацию проводят в упаковке из полиэтилена толщиной 0,06 - 0,20 мм, пергамента или крафт-бумаги.
В качестве стерилизующего агента применяется раствор формалина (по формальдегиду). Режим стерилизации - 300 мин при 75 °С.
Для нейтрализации формальдегида используют 23 - 25 % водный раствор аммиака. Срок хранения изделий, простерилизованных в упаковке из полиэтиленовой пленки, составляет 5 лет, из пергамента или крафт-бумаги - 21 сут.

Формальдегид из параформальдегида. Стерилизация проводится в камерах из оргстекла (соотношение площади пола камеры к ее объему 1: 20), которые имеют перфорированную полку с отверстиями диаметром 0,6 - 0,7 см (одно отверстие на 1 см 2). Слой параформальдегида толщиной 1 см равномерно распределяют по дну камеры. Полку устанавливают на уровне 2 см от поверхности. Метод рекомендуется применять для цельнометаллических режущих инструментов из нержавеющей стали.
Стерилизацию проводят без упаковки, размещая изделия на перфорированной полке не более чем в два слоя во взаимно перпендикулярных направлениях.
Применяют два режима стерилизации: 300 мин при 22 °С или 360 мин при 14 о С. Срок хранения простерилизованных изделий в стерильной емкости (стерилизационной коробке), выложенной стерильной простыней, составляет 3 сут.

Радиационный, лучевой метод стерилизации (применение ионизирующего излучения). Для стерилизации твердых предметов, портящихся при нагревании (некоторые пластмассы, электронная аппаратура и др.), может быть использована так называемая лучевая или радиационная стерилизация (обычно используют ионизирующее у-излучение в дозах 3-10 млн рад). Этот метод стерилизации обычно применяется в заводских условиях при промышленном выпуске стерильных изделий медицинского назначения (например, одноразовых шприцев).

Кафедра общей гигиены с экологией

Исаханов А.Л., Гаврилова Ю.А.

КОНСЕРВИРОВАНИЕ ПИЩЕВЫХ ПРОДУКТОВ И ЕГО ГИГИЕНИЧЕСКАЯ ОЦЕНКА

Учебное пособие по дисциплине «Гигиена»

По направлению подготовки «Педиатрия»

Исаханов Александр Леванович, заведующий кафедрой общей гигиены с экологией, доцент, кандидат медицинских наук

Гаврилова Юлия Александровна, старший преподаватель кафедры общей гигиены с экологией, кандидат медицинских наук

Рецензенты:

Соловьев Виктор Александрович, заведующий кафедрой мобилизационной подготовки здравоохранения и медицины катастроф ФГБОУ ВО ЯГМУ Минздрава России

Худоян Задине Гургеновна, доцент кафедры инфекционных болезней, эпидемиологии и детских инфекций, кандидат медицинских наук

Исаханов А.Л., Гаврилова Ю.А. Консервирование пищевых продуктов и его гигиеническая оценка. – Ярославль, ЯГМУ, 2017. – 68 стр.

В учебно-методическом пособии изложены основные теоретические аспекты методов консервирования пищевых продуктов и их гигиенической оценки, рассматриваются вопросы для самоподготовки и обсуждения, материал к практическому занятию по теме: «Гигиеническая оценка методов консервирования пищевых продуктов».

Учебно-методическое пособие предназначено для студентов медицинских вузов, обучающихся по специальности «Педиатрия», изучающих дисциплину «Гигиена».

Утверждено в печать УМУ от 16.10 2017

© Исаханов А.Л., Гаврилова Ю.А., 2017

©Ярославский государственный медицинский университет, 2017

Введение 4

1. Консервирование пищевых продуктов. Классификация

методов консервирования по К.С. Петровскому 6

Консервирование воздействием температурных

факторов. Консервирование с помощью высокой температуры9

Консервирование с помощью низкой температуры 19

Консервирование с помощью поля УВЧ 22

Консервирование путем обезвоживания (сушка) 24

Консервирование с помощью ионизирующей радиации 27

Консервирование путем изменения свойств среды 31

Консервирование путем изменения (повышения) осмотического 31

давления

Консервирование путем изменения концентрации водородных ионов 34

Консервирование с помощью химических веществ 36

Комбинированные методы консервирования 53

Исследование консервов 59

Приложение 63

Вопросы для самоподготовки и обсуждения на практическом занятии 63

Задания в тестовой форме для самоконтроля 64


Эталоны к заданиям в тестовой форме для самоконтроля 66

Список литературы 67

ВВЕДЕНИЕ

Правовое регулирование отношений в области обеспечения качества и безопасности пищевых продуктов осуществляется Федеральным законом № 29-ФЗ «О качестве и безопасности пищевых продуктов» от 2 января 2000 года (ред. от 13.07.2015) , другими федеральными законами и принимаемыми в соответствии с ними иными нормативными правовыми актами Российской Федерации.

Контроль качества и безопасности пищевых продуктов, определяющих здоровье населения и продолжительность его жизни, является одной из задач Государственного санитарно-эпидемиологического надзора.

Еще в глубокой древности люди знали несколько способов сохранения продуктов: замораживание, сушка, соление, квашение. В основе всех этих способов лежало лишение микроорганизма хотя бы одного из условий их нормального существования.

Самым молодым методом консервирования является стерилизация (использование высоких температур) – ему около 200 лет. Изобретателем этого метода являлся французский ученый Аппер . Его открытие долгое время было бы неизвестным, но в период наполеоновской войны была острая потребность армии в свежих продуктах питания, а не только в сушеном виде. Поэтому был объявлен конкурс на производство продуктов питания, которые долго бы сохраняли свои первоначальные свойства и могли быть использованы в полевых условиях. В этом конкурсе принял участие и королевский повар Аппер.

Суть его открытия сводилась к следующему: стеклянная посуда наполнялась продуктом, укупоривалась, обвязывалась прочной проволокой, затем помещалась на водяную баню, где кипятилась определенное время.

В число членов комиссии входил выдающийся химик Гей-Люссак. Он специализировался на изучении свойств газов. И именно с этой точки зрения он подошел к данной технологии. Он произвел анализ незаполненного пространства тары, не обнаружил там воздуха и сделал вывод о том, что консервы долго сохраняются потому, что в банках нет кислорода. О том, что порча продуктов вызывается микроорганизмами, станет известно только спустя полвека из трудов Луи Пастера. В 1812 году Аппер впервые организовал Дом Аппера, где вырабатывались консервы из зеленого горошка, томатов, бобов, абрикосов, вишни в виде соков, супов, бульонов.

Первоначально консервы выпускали только в стеклянной таре. Жестяная тара появилась в 1820 году в Англии. Использование автоклава под давлением для стерилизации также некоторые историки приписывают Апперу. Другие считают, что этот способ предложил Фастье в 1839 году и Айзек Цинслоу в 1843 году.

В это же время в России проблемами консервирования занимался В. Н. Карозин. Он разработал технологию сухих порошков из различных растительных продуктов и соков. В России первая консервная фабрика по переработке зеленого горошка была организована в 1875 году в Ярославской губернии французом Мальоном. Приблизительно в это же время появляется и консервный завод по производству варенья и консервированию фруктов в Симферополе. Эти консервные предприятия работали по 3-4 месяца в году.

Цель данного пособия : раскрыть гигиенические и экологические аспекты методов консервирования продуктов питания как фактора сохранения их пищевых свойств, для обеспечения адекватного питания населения, призванного обеспечить нормальный рост, развитие организма, высокий уровень его работоспособности и оптимальную продолжительность жизни человека.

Перед будущими врачами ставится задача изучения проблем, связанных с действием методов консервирования на сохранение основных свойств продуктов питания как фактора влияющего на здоровье отдельного человека и населения в целом.

Работа с материалом данного пособия формирует у студентов профессиональные и общепрофессиональные компетенции: ОПК-5 (способность и готовность анализировать результаты собственной деятельности для предотвращения профессиональных ошибок), и ПК-1 (способность и готовность к осуществлению комплекса мероприятий, направленных на сохранение и укрепление здоровья и включающих в себя формирование здорового образа жизни, предупреждение возникновения и (или) распространения заболеваний…).

1. КОНСЕРВИРОВАНИЕ ПИЩЕВЫХ ПРОДУКТОВ. КЛАССИФИКАЦИЯ МЕТОДОВ КОНСЕРВИРОВАНИЯ

ПО К.С. ПЕТРОВСКОМУ

Консервы (от лат. conserve – сохраняю) – это пищевые продукты растительного или животного происхождения, специально обработанные и пригодные для длительного хранения.

Консервирование – это техническая обработка пищевых продуктов (изготовления консервов), для угнетения жизнедеятельности микроорганизмов с целью предохранения их от порчи при длительном (по сравнению с обычными продуктами этих групп) хранении.

Порча вызывается главным образом жизнедеятельностью микроорганизмов, а также нежелательной активностью некоторых ферментов, входящих в состав самих продуктов. Все способы консервирования сводятся к уничтожению микробов и разрушению ферментов либо к созданию неблагоприятных условий для их активности.

Консервированные пищевые продукты занимают видное место в питании населения во всех странах.

Развитие консервирования пищевых продуктов позволяет свести к минимуму сезонные влияния и обеспечить на протяжении всего года разнообразный ассортимент пищевых продуктов, особенно овощей, фруктов, ягод и их соков.

Высокий уровень развития консервирования дает возможность перевозить продукты питания на далекие расстояния и таким образом делает редкие продукты доступными для питания во всех странах независимо от расстояния и климатических условий.

Широкому развитию консервирования продуктов питания способствовали технический прогресс в технологии производства консервов, а также изыскание, научная разработка и внедрение в практику новых, высокоэффективных методов.

Особенностью этих методов является высокая эффективность, выражающаяся в сочетании высокой устойчивости при длительном хранении с максимальным сохранением природных пищевых, вкусовых и биологических свойств консервируемых продуктов.

Применяемые в современных условиях методы консервирования, а также методы обработки продуктов для продления срока их хранения могут быть систематизированы в следующем виде (по К.С. Петровскому).

А. Консервирование воздействием температурных факторов.

1. Консервирование с помощью высокой температуры:

а) стерилизация;

б) пастеризация.

2. Консервирование с помощью низкой температуры:

а) охлаждение;

б) замораживание.

3. Консервирование с помощью поля ультравысокой частоты.

Б. Консервирование обезвоживанием (сушка).

1. Обезвоживание (сушка) в условиях атмосферного давления:

а) естественная, солнечная сушка;

б) искусственная (камерная) сушка – струйная, распылительная, пленочная.

2. Обезвоживание в условиях вакуума:

а) вакуумная сушка;

б) сублимационная сушка (лиофилизация).

В. Консервирование ионизирующей радиацией.

1. Радаппертизация.

2. Радуризация.

3. Радисидация.

Г. Консервирование изменением свойств среды.

1. Повышение осмотического давления:

а) консервирование солением;

б) консервирование сахаром.

2. Повышение концентрации водородных ионов:

а) маринование;

б) квашение.

Д. Консервирование химическими веществами.

1. Консервирование антисептиками.

2. Консервирование антибиотиками.

3. Применение антиокислителей.

Е. Комбинированные методы консервирования.

1. Копчение.

2. Презервирование.

Из приведенной классификации видно, что для сохранения продуктов имеется достаточное число методов консервирования, позволяющих сохранить их продолжительное время с наименьшими изменениями химического состава и минимальной бактериальной обсемененностью.

2. КОНСЕРВИРОВАНИЕ ВОЗДЕЙСТВИЕМ ТЕМПЕРАТУРНЫХ ФАКТОРОВ: КОНСЕРВИРОВАНИЕ ПИЩЕВЫХ ПРОДУКТОВ С ПОМОЩЬЮ ВЫСОКОЙ ТЕМПЕРАТУРЫ

Консервирование с помощью высокой температуры является одним из самых распространенных методов. В основе применения соответствующих уровней и режимов температуры с целью консервирования лежат научные данные об устойчивости различных видов микроорганизмов к действию температуры. При температуре 60°С большинство вегетативных форм микроорганизмов погибает в течение 1–10 мин. Однако имеются термофильные бактерии, которые могут сохранять жизнеспособность при температуре до 80 °С.

Уничтожение вегетативных форм и спор бактерий для непосредственного употребления продукта может проводиться методами кипячения и автоклавирования.

Кипячение (100°С). В течение нескольких минут кипячение продукта является гибельным для вегетативных форм всех видов микроорганизмов. Значительной устойчивостью к высокой температуре отличаются споры бактерий. Для их инактивации требуется кипячение в течение 2–3 ч и более (например, споры Cl. botulinum погибают при 100 °С в течение 5– 6 ч).

Автоклавирование (120°С и более). В целях ускорения гибели спор применяют более высокие температуры , превышающие температуру кипения. Нагревание в автоклавах при повышенном давлении позволяет поднять температуру в них до 120°С и более. При автоклавировании представляется возможным инактивировать споры в течение 30 мин – 1 ч. Однако имеются высокоустойчивые споры (например, Cl. botulinum типа А), для инактивации которых требуется более продолжительное автоклавирование.

Консервирование с помощью высокой температуры производится методами стерилизации и пастеризации.

Стерилизация. Этот способ предусматривает освобождение продукта от всех форм микроорганизмов, в том числе и от спор. В обеспечении надежного стерилизующего эффекта важное значение имеют степень исходного бактериального обсеменения консервируемого продукта перед стерилизацией и соблюдение режима стерилизации. Чем больше обсеменен стерилизуемый продукт, тем вероятнее наличие термоустойчивых форм микроорганизмов (спор) и выживаемость их в процессе стерилизации.

Режим стерилизации устанавливается на основании специальной формулы, которая разрабатывается с учетом вида консервов, теплопроводности консервируемого продукта, его кислотности, степени обсемененности сырья, размера банок и др. В зависимости от этих показателей определяются величина температуры и продолжительность стерилизации.

При консервировании методом стерилизации применяются достаточно интенсивные (выше 100 °С) и продолжительные (более 30 мин) температурные воздействия. Обычно консервирование происходит при 108–120°C в течение 40–90 минут.

Такие режимы приводят к существенным структурным изменениям вещества консервируемого продукта, изменению его химического состава, разрушению витаминов и ферментов, изменению органолептических свойств. Метод консервирования стерилизацией с помощью высокой температуры обеспечивает длительное хранение консервов.

В отношении жидких продуктов (молоко и др.) Применяют специальные методы быстрой стерилизации высокой температурой.

Тиндализация. Это метод дробной стерилизации,заключающийся в повторном воздействии текучим паром на стерилизуемые объекты температуры 100°C в интервале 24 часа.

В периоды между нагреваниями объекты выдерживают в условиях, способствующих прорастанию спор при температуре 25–37° C.

Рис. 1. Джон Тиндаль

При данной температуре споры превращаются в вегетативные клетки, которые быстро погибают при следующем нагревании материала до 100°C.

Тиндализация как метод был разработан английским физиком Джоном Тиндалем 1820-1893 годах (рис. 1). Применяется в основном для стерилизации жидкостей и пищевых продуктов, портящихся при температуре выше 100°С, для стерилизации лекарственных препаратов на фармацевтических заводах для стерилизации растворов некоторых термолабильных лекарственных веществ, изготовляемых в ампулах, в микробиологии для стерилизации некоторых питательных сред, а также для так называемого горячего консервирования пищевых продуктов в специальных аппаратах с терморегуляторами (рис. 2).

Тиндализацию проводят в следующих вариантах:

а) трех-четырехкратно при температуре 100° C в течение 20-30 мин.;

6) трехкратно - при температуре 70-80° C в течение часа;

в) пятикратно - при температуре 60-65° C в течение часа.

Рис. 2. Тиндализатор

Контроль эффективности стерилизации

Микробиологический контроль осуществляется до и после стерилизации. Путем выборочных бактериологических исследований, проводимых до стерилизации, стремятся установить степень бактериальной обсемененности стерилизуемого продукта и в случае ее повышения выявить причины этого. После стерилизации бактериологические исследования проводят с целью выявления остаточной микрофлоры. Обнаружение при этом некоторых видов спороносных микроорганизмов (В. subtilis, В. теsentericus и др.) не является основанием для браковки консервов, так как обычно споры этих бактерий находятся в состоянии анабиоза.

Для проверки эффективности стерилизации может использоваться метод выборочной термостатной выдержки, заключающийся в том, что отобранные из партии консервы в течение 100 дней находятся в термостатной камере при температуре 37 °С на 10 дней. При наличии в консервах остаточной микрофлоры, сохранившей жизнеспособность, она прорастает, вызывает порчу консервов, сопровождаемую бомбажем (вздутие банки). Однако развитие некоторых видов микроорганизмов не сопровождается газообразованием, в связи с чем, бомбаж отсутствует, и эти недоброкачественные консервы не отбраковываются. Таким образом, термостатная выдержка не во всех случаях позволяет выявить недоброкачественность консервов.

Важнейшим условием сохранения доброкачественности консервов является герметичность. Проверка последнего производится на заводе в специальном аппарате «Бомбаго». Банку помещают в герметически закрытый, наполненный кипяченой водой резервуар аппарата, из которого вакуум-насосом откачивают воздух. При этом воздух из консервной негерметичной банки начинает поступать в воду в виде струйки пузырьков, что говорит об отсутствии герметичности изделия.

Пастеризация.

Это – способ обеззараживания органических жидкостей путем нагревания их до температуры ниже 100°, когда гибнут только вегетативные формы микроорганизмов.

Технология была предложена в середине XIX века французским микробиологом (рис. 3) Луи Пастером. В 1860-х гг. Луи Пастер обнаружил, что порчу вина и пива можно предотвратить путем нагревания напитков до температуры 56 °С.

Рис. 3. Луи Пастер

Широко применяют пастеризацию пищевых продуктов, качество и органолептические свойства которых значительно снижаются при нагревании их выше 100° (например, пастеризация молока, сливок, плодовых, фруктовых и ягодных соков и других, главным образом жидких, продуктов питания). При этом продукты освобождаются от неспороносных патогенных микроорганизмов, дрожжей, плесневых грибков (микробная обсемененность снижается на 99-99,5%).

Пастеризующий эффект может быть достигнут при более низкой температуре и меньшей экспозиции, чем при стерилизации, поэтому в процессе пастеризации продукт подвергается минимальному неблагоприятному температурному воздействию, что позволяет почти полностью сохранить его биологические, вкусовые и другие природные свойства.

Этот метод используется для, инактивации только вегетативных форм микроорганизмов, в результате чего достигается не столько удлинение сроков сохранности продуктов, сколько освобождение их от жизнеспособных патогенных микроорганизмов кишечно-тифозной группы, микобактерий туберкулеза и бруцеллезной палочки , а также некоторых других возбудителей.

Пастеризация является одним из самых лучших методов консервирования плодов и овощей в домашних условиях. Она дает возможность свести к минимуму потери витаминов и нежелательные изменения вкуса и внешнего вида продукции. Кроме того, продукт становится частично или полностью готовым к употреблению без дополнительной кулинарной обработки. Сравнить методы консервирования с помощью высокой температуры можно с помощью таблицы № 1.

Таблица № 1.

Сравнительная характеристика методов консервирования с помощью высокой температуры

Метод t °С Время Объект влияния Отрицательные свойства метода Положительные свойства метода Консервируемые продукты
Кипячен-ие 100°С 2 - 3 мин. от 2 до 6 часов Вегета-тивные формы Споры Временный эффект Для уничтожения спор требуется длительное кипячение Быстрый результат Любая пища, которую готовят дома или в любых учреждениях общественного питания
Автокла-вирование 120°С и выше от 30 до 60 мин. Вегета-тивные формы, споры Повышенная взрывная опасность системы Уничтожаются вегетативные формы, споры, сохраняется свежесть продуктов Перевязочный материал, белье, предметы оборудования, растворы, упакованные консервы
Стерилиза-ция Тиндализа-ция от 108 до 120°С 100 °С 25-37 °С 40-90 мин. Вегета-тивные формы Измене­ния структуры вещества продукта, его хи­мического состава, органолептики, разрушение витаминов, ферментов Длительное хранение консервированных продуктов Молоко, мясные, рыбные консервы
Пастериза- ция от 65 до 90°С 1-20 мин. Вегета-тивные формы Короткий срок хранения продуктов, не уничтожает споры Сохранение витаминов, химического состава, вкус продукта Молоко, Фруктовые и овощные соки

В зависимости от температурного режима различают низкую и высокую пастеризацию (таблица № 2).

Таблица № 2

Виды пастеризации в зависимости от температуры

Низкая пастеризация (длительная) проводится при температуре, не превышающей 65 °С. При температуре 63–65 °C большинство вегетативных форм неспороносных микроорганизмов погибает в первые 10 мин. Практически низкая пастеризация проводится с некоторым запасом гарантий не менее 20 мин., а точнее в течение 30–40 минут.

Высокая пастеризация (короткая) представляет собой кратковременное (не более 1 мин) воздействие на пастеризуемый продукт высокой температуры (85–90 °С ), что достаточно эффективно в отношении патогенной неспороносной микрофлоры и в то же время не влечет за собой существенных изменений природных свойств, пастеризуемых продуктов. Пастеризации подвергаются преимущественно жидкие пищевые продукты, главным образом молоко, фруктовые и овощные соки и др.

Мгновенная пастеризация (при температуре 98 °C в течение нескольких секунд).

В промышленных условиях используют различные режимы пастеризации в специализированной установке (рис. 4).

Рис. 4. Пастерилизатор для молока

Ультрапастеризация производится при нагревании продукта на несколько секунд до температуры выше 100° C. Сейчас используется ультрапастеризация для получения молока долгосрочного хранения. При этом молоко на одну секунду нагревается до температуры 132 °С, что позволяется хранить запакованное молоко в течение нескольких месяцев.

Применяют два способа ультрапастеризации:

1. контакт жидкости с нагретой поверхностью при температуре от 125–140 °C

2. прямое смешивание стерильного пара при температуре от 135–140 °C

В англоязычной литературе этот метод пастеризации называется UHT – Ultra-high temperature processing, в русскоязычной литературе применяют термин «асептическая пастеризация».

Пастеризацию в домашних условиях проводят в водяной бане, для чего берут бак с широким дном, в который можно поместить несколько бутылок одного размера.

На дно кладут дополнительное деревянное или металлическое дно (высотой 2,5-3 см) с отверстиями, сверху покрывают его полотном.

Затем в водяную баню наливают воду. Уровень ее зависит от способа укупорки. В одной таре пастеризуют консервы в емкостях только одного размера. Нужно помнить также, что банки или бутылки не должны соприкасаться между собой и с металлическими частями бака.

Чтобы стеклянная посуда не лопнула, температура воды не должна быть выше температуры консервов. Для сокращения времени нагревания воды до температуры пастеризации и быстрого уничтожения ферментов плоды и овощи заливают горячим сиропом или заливкой на 1–2 см ниже краев горловины.

Продолжительность подогрева воды не должна превышать 15 минут для полулитровых банок и бутылок, 20 минут для одно- и двухлитровых, 25 минут для трехлитровых баллонов.

После окончания процесса пастеризации или стерилизации банки и бутылки вынимают из воды специальным зажимом. Если используют обжимные металлические крышки, то укупоривают ими банки с помощью ручной закаточной машинки. Укупоренные банки несколько раз прокатывают по столу и устанавливают вверх дном до полного охлаждения.

Особый вид тепловой стерилизации – горячий розлив . Продукт прогревают до кипения, немедленно разливают в стерильную прогретую тару и укупоривают. В таре достаточной вместимости (2–3 л) запаса тепла в горячем продукте хватает для получения эффекта пастеризации.

Когда банки остынут, снимают зажимы и проверяют плотность укупорки. Если внутрь банки через прокладку входит воздух, то слышно характерное шипение. Поблизости от места проникновения воздуха в банку образуется пенка. Через некоторое время такие крышки легко открываются. В этом случае устанавливают и устраняют причину дефекта.

Полиэтиленовые крышки предварительно выдерживают несколько минут в кипящей воде, а затем закрывают ими стеклянные банки в горячем виде.

КОНСЕРВИРОВАНИЕ С ПОМОЩЬЮ НИЗКОЙ ТЕМПЕРАТУРЫ

Консервирование с помощью низкой температуры является одним из лучших методов длительного сохранения скоропортящихся продуктов с минимальными изменениями природных их свойств и сравнительно небольшими потерями биологических компонентов – витаминов, ферментов и др. Устойчивость микроорганизмов к действию низкой температуры у разных видов микробов различная. При температуре 2°С и ниже развитие большинства микроорганизмов прекращается.

Наряду с этим имеются такие микроорганизмы (психрофилы), которые могут развиваться при низких температурах (от –5 до –10 °С). К ним относятся многие грибы и плесени . Низкие температуры не вызывают гибель микроорганизмов, а лишь замедляют или полностью прекращают их рост. Многие патогенные микробы, в том числе бесспоровые формы (брюшнотифозная палочка, стафилококки, отдельные представители сальмонелл и др.), могут выживать в замороженных пищевых продуктах в течение нескольких месяцев. Опытным путем установлено, что при хранении скоропортящихся продуктов, например, мяса при температуре от (- 6°С) количество бактерий медленно снижается в течение 90 дней. После этого срока оно начинает увеличиваться, что свидетельствует о начавшемся процессе роста бактерий. При продолжительном хранении (6 мес. и более) в холодильных камерах необходимо поддерживать температуру не выше (- 12 °С). Прогоркание жира в сохраняемых жирных продуктах можно предотвратить путем снижения температуры до (- 30 °С). Консервирование с помощью низкой температуры может быть произведено путем охлаждения и замораживания .

Охлаждение. Предусматривается обеспечение в толще продукта температуры в пределах 0 - 4°С. В камерах при этом поддерживается температура от 0 до 2°С при относительной влажности не выше 85%. Консервирование путем охлаждения позволяет задержать развитие в продукте неспороносной микрофлоры, а также ограничить интенсивность автолитических и окислительных процессов на срок до 20 дней. Наиболее часто консервированию охлаждением подвергается мясо. Охлажденное мясо является лучшим видом мяса, предназначенного для реализации в торговой сети.

Замораживание. При замораживании в клетках и тканях консервированных продуктов происходят значительные струк­турные изменения, связанные с образованием в протоплазме кристалликов льда и повышением внутриклеточного давления . В ряде случаев эти изменения носят необратимый характер и замороженные продукты (после оттаивания) резко отличаются от свежих. Получение продукта с наименьшими изменениями структуры и максимальной обратимостью возможно только при «быстром замораживании». Увеличение скорости замораживания является одним из главных факторов в обеспечении высокого качества замороженных продуктов. Чем выше скорость замораживания, тем меньше величина образующихся кристаллов льда и тем больше их количество.

Эти малые кристаллы равномернее распределяются в мышечной ткани, создают большую поверхность соприкосновения их с коллоидами, не деформируют клеток. При оттаивании таких продуктов достигаются наивысшая обратимость процессов замораживания и наиболее полный возврат воды в окружающие коллоиды. Кроме того, в быстро замороженных продуктах хорошо сохраняются витамины. При медленном замораживании возникают необратимые структурные изменения вследствие образования крупных кристаллов льда, которые деформируют клеточные элементы, при оттаивании вода не полностью возвращается в коллоиды, и продукт подвергается дегидратации.

Скорость замораживания отражается и на интенсивности развития микрофлоры в замороженных продуктах в процессе их хранения.

Большое влияние на качество продукта и его бактериальную обсемененность оказывает и способ размораживания (дефростирование ). При быстром дефростировании отмечаются большие потери питательных, экстрактивных и биологически активных веществ. В связи с тем, что быстрое дефростирование производится при высокой температуре, отмечается также интенсивное развитие микроорганизмов. Для дефростирования мяса наиболее приемлемо медленное, а для фруктов и ягод – быстрое дефростирование.

В современных условиях ставится задача обеспечения не­прерывной холодильной цепи в продвижении скоропортящихся и замороженных продуктов от мест их производства до мест реализации и потребления. Особое значение приобретает широкое использование в производстве пищевых продуктов, тор­говой сети и общественном питании холодильных средств: холодильников складского типа различной (преимущественно большой) вместимости, холодильных камер различной вместимости, холодильных шкафов, охлаждаемых прилавков, хладо-транспорта (поезда и вагоны-холодильники, суда-рефрижераторы, автомобили-рефрижераторы) и других изотермических, холодильных средств, позволяющих осуществить в полном объеме непрерывность продвижения скоропортящихся продуктов в условиях низких температур.

Холодильная техника получила значительное развитие и продолжает совершенствоваться. Современные холодильные средства оборудуются на основе круговорота хладоагента в замкнутой системе с чередованием процессов его испарения и конденсации. Процесс испарения хладоагента сопровождаем значительным поглощением тепла из окружающей среды, в результате чего и проявляется охлаждающий эффект. Путем многократного повторения процесса испарения хладоагента, можно достигнуть заданного уровня отрицательной температуры в камере. Испарение хладоагента, т. е. превращение его из жидкого состояния в парообразное, происходит в специальном испарителе. Конденсация паров хладоагента производится путем их сжатия в специальных компрессорах и последующей конденсации паров в жидкое состояние в специальных конденсаторах.

В качестве хладоагента в холодильных агрегатах применяются разнообразные вещества, среди которых наибольшее распространение получили аммиак и фреоны . Аммиак используется в холодильных агрегатах большой мощности, холодопроизводительностью до 133 888 кДж/ч (32 000 ккал/ч) и более. При проникновении в воздух помещений аммиак представляет опасность для здоровья. Предельно допустимая концентрация аммиака в воздухе помещений 0,02 мг/л. Для обеспечения безопасности помещения, где установлены холодильные агрегаты, должны оборудоваться вентиляцией с производительностью обмена воздуха не менее 10 м 3 в час на каждые 4184 Дж (1000 кал).

Фреоны выгодно отличаются от аммиака безвредностью и отсутствием запаха. Они безопасны в пожарном отношении и не взрывоопасны. В холодильной промышленности применяют фреоны разных марок: фреон-12, фреон-13, фреон-22, фреон-113 и др. Фреоны широко используются в производстве холодильного оборудования предприятий торговли и общественного питания, а также холодильных шкафов бытового назначения. За последнее время значительно расширилось применение фреонов в холодильных агрегатах большой мощности – до 104 600 кДж (25 000 ккал/ч) и более.

Для охлаждения и замораживания пищевых продуктов используют также естественный и искусственный лед, льдосолевые смеси (в том числе эвтектический лед), сухой лед (твердая углекислота). Сухой лед применяют в основном для охлаждения мороженого при его розничной продаже.

КОНСЕРВИРОВАНИЕ С ПОМОЩЬЮ ПОЛЯ УВЧ

Этот способ консервирования основан на том, что под влиянием поля УВЧ пищевой продукт быстро стерилизуется. Укупоренные в герметичную тару продукты, помещенные в зону действия волн ультравысокой частоты, в течение 30–50 секунд нагреваются до кипения и таким образом стерилизуются.

Обычное нагревание требует значительного времени, оно происходит постепенно от периферии к центру путем конвекции . При этом, чем ниже теплопроводность нагреваемого продукта, тем труднее в нем возникают конвекционные токи, тем больше требуется времени для нагревания продукта. По-иному происходит нагревание в поле УВЧ: одновременно нагреву подвергаются три точки продукта . При использовании токов УВЧ теплопроводность продукта не имеет значения и не оказывает влияния на скорость прогревания продукта.

Консервирование токами ультравысокой (УВЧ ) и сверхвысокой (СВЧ ) частоты основано на том, что в помещённом в высокочастотное электромагнитное поле переменного тока продукте происходит усиленное движение заряженных частиц, а это приводит к повышению температуры продукта до 100 о С и выше. Продукты, укупоренные в герметичную тару и помещённые в зону действия волн ультравысокой частоты, нагреваются до кипения в течении 30-50 с.

Отмирание микроорганизмов при нагревании продуктов в поле СВЧ происходит значительно быстрее, чем при тепловой стерилизации, в результате того, что колебательные движения частиц в клетках микроорганизмов сопровождаются не только выделением тепла, но и поляризационными явлениями, влияющими на их жизненные функции. Так, для стерилизации мяса и рыбы в поле СВЧ при 145 о С требуется 3 минуты, в то время как обычная стерилизация длится 40 минут при температуре 115-118 о С. Метод консервирования с помощью токов ультравысокой и высокой частоты нашел практическое применение в плодоовощной промышленности для стерилизации фруктовых и овощных соков, в общественном питании токи СВЧ используют для приготовления различных блюд.

3. КОНСЕРВИРОВАНИЕ ПУТЕМ ОБЕЗВОЖИВАНИЯ (СУШКА)

Обезвоживание – один из наиболее старых методов длительного сохранения продуктов, особенно фруктов и рыбы, а также мяса и овощей. Консервирующее действие обезвоживания основано на прекращении жизнедеятельности микроорганизмов при содержании влаги в пищевых продуктах менее 15% . Большинство микроорганизмов нормально развивается при содержании в продукте не менее 30% воды. При консервировании обезвоживанием микроорганизмы впадают в состояние анабиоза, а при увлажнении продукта вновь получают способность развиваться.

Под влиянием сушки в продуктах возникает ряд изменений структурного и химического характера, сопровождающихся значительным разрушением таких биологических систем, как витамины и ферменты . Консервирование путем обезвоживания может быть произведено в условиях атмосферного давления (естественная и искусственная сушка) и в условиях вакуума (вакуумная и сублимационная сушка).

Естественная (солнечная) сушка – процесс достаточно длительный, в связи с чем высушиваемые продукты могут подвергаться инфицированию и общему загрязнению. Солнечная сушка возможна только в местностях с большим количеством солнечных дней. Все это ограничивает промышленное применение методов естественной сушки в массовом масштабе.

В Узбекистане и Татарстане путем естественной солнечной сушки заготавливают высококачественные сухие фрукты (абрикосы, изюм и др.), пользующиеся мировой известностью. Разновидностью естественной сушки является вяление , посредством которого готовят воблу и тарань, рыбец и белорыбицу.

Искусственная сушка может быть струйной, распылительной и пленочной. Струйный метод – наиболее простой вид промышленной сушки.

Струйная сушка используется для высушивания жидких продуктов (молоко, яйцо, томатный сок и др.) и производится методом распыления. Продукты через форсунку распыляют в тонкую взвесь (величина частиц 5–125 мкм) в специальной камере с движущимся горячим воздухом (температура 90–150 °С). Взвесь мгновенно высыхает и в виде порошка оседает в специальные приемники. Движение воздуха и удаление влаги из сушильных камер обеспечиваются системой вентиляционных устройств.

Сушка методом распыления может быть произведена в камерах с быстро вращающимся диском, на который направляется тонкой струей подогретое молоко. Диск разбрызгивает жидкость в мелкую пыль, которая высушивается идущим навстречу горячим воздухом. Кратковременность действия, несмотря на высокую температуру, при методе распыления обеспечивает незначительные изменения состава высушиваемого продукта, который легко восстанавливается.

При контактном, пленочном методе высушивание производится путем контакта (нанесения) высушиваемого» продукта (молоко и др.) с нагретой поверхностью вращающегося барабана и последующего снятия высушенного продукта (пленки) с помощью специального ножа (скребок). Этот метод: сушки характеризуется существенными структурными изменениями высушиваемого продукта, денатурацией его составных частей и меньшей восстанавливаемостью при его оводнении. Например, растворимость сухого молока, полученного пленочным способом, составляет 80–85%, тогда как молоко распылительной сушки растворяется в концентрации 97–99%.

Вакуумная сушка. Такая сушка производится в условиях разрежения при невысокой температуре, не превышающей 50 °С. Она имеет ряд преимуществ по сравнению с атмосферной сушкой. При вакуумной сушке в наибольшей степени обеспечиваются сохранность витаминов и природные вкусовые свойства! высушиваемого продукта. Так, в результате сушки яиц при атмосферном давлении разрушение витамина А достигает 30– 50%, а при вакуумной сушке потеря его не превышает 5-7%.

Сублимационная сушка (лиофилизация) – самый современный и перспективный метод консервирования пищевых продуктов. При этом методе обеспечивается наиболее совершенное высушивание с максимальным сохранением природных, пищевых, органолептических и биологических свойств продукта. Особенностью метода является то, что влагу из замороженных продуктов удаляют непосредственно из кристаллов льда, минуя жидкую фазу.

В современных сублимационных установках основной частью является сублиматор (рис. 5), представляющий собой металлическую, цилиндрической формы со сферическими дисками камеру, в которую помещают высушиваемые пищевые продукты и создают глубокий вакуум. Для конденсации водяных паров применяют специальные конденсаторы – вымораживатели, охлаждаемые компрессорными фреоновыми или аммиачными холодильными установками. Установки снабжены ротационными масляными вакуум-насосами с газобалластным устройством. Во время работы установки обеспечиваются герметичность сублиматора - конденсатора, всех трубопроводов и частей, входящих в вакуум-систему.

В сублимационной сушке различают три периода высушивания. В первом периоде после загрузки высушиваемого продукта в сублиматоре создается высокий вакуум, под влиянием которого происходит бурное испарение влаги из продуктов и последние сами замораживаются. Температура в продуктах при этом резко снижается (–17°С и ниже). Самозамораживание протекает в течение 15–25 мин со скоростью 0,5–1,5°С в минуту. Самозамораживанием из продуктов удаляется 15–18% влаги.

Остальное количество влаги (около 80%), удаляется из сублимируемых продуктов во втором периоде сушки, который начинается с момента установления в продуктах устойчивой температуры порядка – 15–20 °С. Сушка сублимацией производится путем нагрева плит, на которых расположены высушиваемые продукты. При этом самозамороженные в первом периоде продукты не размораживаются, а кристаллы льда в продукте испаряются, минуя жидкую фазу. Продолжительность второго периода зависит от характера высушиваемого продукта, его массы, содержания влаги и колеблется от 10 до 20 ч.

Рис. 5. Сублиматор

Третий период представляет собой тепловую вакуумную сушку, в процессе которой из продукта удаляется оставшаяся абсорбционно связанная влага. В процессе тепловой вакуумной сушки температура высушиваемых продуктов постепенно повышается до 45–50 °С при давлении в сублиматоре 199,98– 333,31 Па (1,5–2,5 мм рт. ст.). Продолжительность тепловой вакуумной сушки 3–4 ч. Важным свойством сублимированных продуктов является их легкая обратимость, т. е. восстановление при добавлении воды.

Наиболее перспективна сублимационная сушка продуктов питания с использованием диэлектрического нагрева токами высокой частоты. При этом продолжительность сушки сокращается в несколько раз.

4. КОНСЕРВИРОВАНИЕ С ПОМОЩЬЮ ИОНИЗИРУЮЩЕЙ РАДИАЦИИ

Сущность метода

Консервирование с применением ионизирующей радиации позволяет длительное время сохранять природные пищевые и биологические свойства пищевых продуктов. Особенностью такого консервирования является получение стерилизующего эффекта без повышения температуры. Именно поэтому консервирование с помощью ионизирующей радиации стали называть холодной стерилизацией или холодной пастеризацией.

Механизм действия

При действии ионизирующей радиации на продукт, в последнем идёт ионизация органических молекул, радиолиз воды, образуются свободные радикалы, различные высокореактивные соединения.

Для оценки консервирующего эффекта и возможных изменений в веществе продукта, а также для определения режима консервирования с помощью ионизирующей радиации, необходимо учитывать количество ионизирующей энергии, поглощённой веществом в процессе облучения продукта. Единицей измерения поглощенной дозы является Грей.

Стерилизующие дозы ионизирующей радиации не одинаковы в отношении различных организмов. Установлена закономерность, что чем меньше организм и чем проще его структура, тем больше его устойчивость к облучению и, соответственно, тем большие дозы радиации требуются для его инактивации. Так, для обеспечения полного пастеризующего аффекта, т. е. освобождения пищевого продукта от вегетативных форм микроорганизмов, необходима доза радиации в пределах 0,005–0,012 МГр (мега Грей). Для инактивации споровых форм требуется доза не менее 0,03 МГр. Особой устойчивостью к ионизирующей радиации отличаются споры Cl. botulinum, уничтожение которых возможно при использовании высоких доз облучения (0,04–0,05 МГр). Еще более высокие уровни радиации необходимы для инактивации вирусов.

При использовании ионизирующей радиации для воздействия на пищевые продукты различают такие термины, как радаппертизация, радуризация и радисидация.

Радаппертизация – радиационная стерилизация, почти полностью подавляющая развитие микроорганизмов, влияющих на устойчивость продукта при хранении. В этом случае используют дозы порядка 10-25 кГр (килогрей). Радаппертизация применяется при обработке пищевых продуктов, предназначенных для длительного хранения в различных, в том числе неблагоприятных, условиях.

Радуризация – радиационная пастеризация пищевых продуктов дозами порядка 5-8 кГр, обеспечивающими снижение микробной обсемененности продуктов и удлинения срока их хранения.

Контроль эффективности стерилизации осуществляется физическими, химическими и бактериологическими методами.

К физическим методам контроля относятся: измерение температуры, давления и времени применения стерилизации.

Для проведения химического контроля на протяжении десятилетий применялись химические вещества, имеющие температуру плавления, близкую к температуре стерилизации. Такими веществами были: бензойная кислота - для паровой стерилизации; сахароза, гидрохинон и некоторые другие -для контроля воздушной стерилизации. Если происходило расплавление и изменение цвета указанных веществ, то результат стерилизации признавался удовлетворительным. Поскольку применение вышеуказанных индикаторов является недостаточно достоверным, в настоящее время внедрены в практику контроля термических методов стерилизации химические индикаторы, цвет которых изменяется под воздействием температуры, адекватной для конкретного режима, для определенного времени, необходимого для реализации данного режима. По изменению окраски индикаторов судят об основных параметрах стерилизации - температуре и продолжительности стерилизации. С 2002 года в России введен в действие ГОСТ РИСО 11140-1 «Стерилизация медицинской продукции. Химические индикаторы. Общие требования», в котором химические индикаторы распределены на шесть классов:

К 1 классу отнесены индикаторы внешнего и внутреннего процесса, которые размещаются на наружной поверхности упаковки с медицинскими изделиями или внутри наборов инструментов и операционного белья. Изменение цвета индикатора указывает на то, что упаковка подверглась процессу стерилизации.

Ко 2 классу относят индикаторы, которые не контролируют параметры стерилизации, а предназначенные для применения в специальных тестах, например, на основании таких индикаторов оценивают эффективность работы вакуумного насоса и наличие воздуха в камере парового стерилизатора.

К 3 классу относятся индикаторы, при помощи которых определяется один параметр стерилизации, например, минимальная температура. Однако они не дают информации о времени воздействия температуры.

К 4 классу относят многопараметровые индикаторы, изменяющие цвет при воздействии нескольких параметров стерилизации. Примером таких индикаторов являются индикаторы паровой и воздушной стерилизации одноразового применения ИКПВС-«Медтест».

К 5 классу относят интегрирующие индикаторы, реагирующие на все критические параметры метода стерилизации.

К 6 классу относят индикаторы-эмуляторы. Индикаторы откалиброваны по параметрам режимов стерилизации, при которых они применяются. Эти индикаторы реагируют на все критические параметры метода стерилизации. Эмулирующие индикаторы являются наиболее современными. Они четко регистрируют качество стерилизации при правильном соотношении всех параметров - температуры, насыщенного пара, времени. При несоблюдении одного из критических параметров индикатр не срабатывает. Среди отечественных термовременных индикаторов используются индикаторы «ИС-120», «ИС-132», «ИС-160», «ИС-180» фирмы «Винар» или индикаторы паровой («ИКПС-120/45», «ИКПС-132/20») и воздушной («ИКПВС-180/60» и «ИКВС-160/150») стерилизации одноразового применения ИКВС фирмы «Медтест».

Все операции с индикаторами - выемка, оценка результатов - осуществляются персоналом, проводящим стерилизацию.

Оценку и учет результатов контроля проводят, оценивая изменения цвета начального состояния термоиндикаторной метки каждого индикатора, сравнивая с цветовой меткой Эталона сравнения.

Если цвет конечного состояния термоиндикаторной метки всех индикаторов соответствует цветовой метке Эталона сравнения, это свидетельствует о соблюдении требуемых значений параметров режимов стерилизации в стерилизационной камере.

Допускаются различия в интенсивности глубины окраски термоиндикаторной метки индикаторов, обусловленные неравномерностью допустимых значений температуры в различных зонах стерилизационной камеры. Если термоиндикаторная метка хотя бы одного индикатора полностью или частично сохранила цвет, легко отличимый от цвета эталонного состояния, это свидетельствует о несоблюдении требуемых значений параметров режимов стерилизации в стерилизационной камере.

Индикаторы и Эталоны сравнения должны совпадать по номерам партий. Запрещается оценивать результаты контроля стерилизации, используя индикаторы разных партий.

Оценку соответствия изменения цвета термоиндикаторной метки в сравнении с Эталоном проводят при освещенности не менее 215 лк, что соответствует матовой лампе накаливания 40 Вт, с расстояния не более 25 см. Для проведения бактериологического контроля в настоящее время применяются биотесты, имеющие дозированное количество спор тест-культуры. Существующая методика позволяет оценивать эффективность стерилизации не ранее чем через 48 часов, что не позволяет применять уже простерилизованные изделия до получения результатов бактериологического контроля.

Биологический индикатор представляет собой препарат из патогенных споро-образующих микроорганизмов с известной высокой устойчивостью к данному типу стерилизационного процесса. Задачей биологических индикаторов является подтверждение способности стерилизационного процесса убивать устойчивые микробные споры. Это наиболее критичный и достоверный тест стерилизационного процесса. Применяются биологические индикаторы в качестве контроля загрузки: если результат положительный (микробный рост), то использовать данную загрузку нельзя и необходимо отозвать все предыдущие загрузки до последнего отрицательного результата. Для получения достоверного биологического ответа следует использовать только те биологические индикаторы, которые соответствуют международным стандартам ЕК 866 и ISO 11138/11135. При использовании биологических индикаторов возникают определенные трудности - необходимость наличия микробиологической лаборатории, обученного персонала, продолжительность инкубации многократно превышает длительность стерилизации, необходимость карантина (невозможность использования) простерилизованных изделий до получения результатов. Из-за указанных выше трудностей в применении биологического метода в амбулаторной стоматологической практике обычно используется физический и химический метод контроля эффективности стерилизации.

Материалы Второго научного симпозиума по значению биологических индикаторов для контроля стерилизации, состоявшегося в Москве 09 декабря 1998 г.

М.И. Леви, Ю.Г. Сучков, В.Я. Бессонова, Ю.С. Зуева, В.Г. Слизкова, М.М. Лившиц, Н.Н. Панкова, Г.И. Рубан, С.М. Савенко, А.П. Митюков, И.И. Корнев, А.И. Воронков
Испытательный лабораторный центр МГЦД, КБ УД Президента РФ,
Московская медицинская академия им. Сеченова, ЦКБ МЦ УД Президента РФ

Для расчета среднего значения числа жизнеспособных спор, приходящихся на один биологический индикатор, целесообразно воспользоваться распределением Пуассона. Линейный характер зависимости логарифма числа жизнеспособных клеток от времени стерилизации не подтверждается результатами экспериментов. Использование в экспериментах по контролю стерилизации значительного числа биологических индикаторов, высокоинформативной питательной среды и длительных сроков культивирования биологических индикаторов позволило обнаруживать в них жизнеспособные споры после стерилизации чаще, чем обычно и практически при всех употребляющихся в практике режимах. Высевы содержимого биологических индикаторов после стерилизации на плотную питательную среду подтвердили соответствие распределения чашек Петри по числу выросших колоний распределению Пуассона, а это означает случайное и изолированное распределение жизнеспособных спор в биологических индикаторах. В некоторых экспериментах число биологических индикаторов с жизнеспособными спорами после относительно длительных сроков стерилизации превышало число таковых после коротких сроков стерилизации, что не находило себе объяснения в рамках принятых представлений о стерилизации. Мы предположили, что стерилизация представляет собой затухающий волнообразный автоколебательный процесс, это и составляет сущность зависимости логарифма числа жизнеспособных спор в биологических индикаторах от времени стерилизации.
Контроль стерилизаторов, эксплуатируемых в лечебных учреждениях Москвы, показал, что во всех случаях остаются биологические индикаторы, содержавшие жизнеспособные споры после стерилизации. Рекомендованная в стандартах вероятность неудовлетворительных результатов анализа биологических индикаторов (10 -6) значительно меньше той, которая достигнута в наших исследованиях.
Экспериментальная паровая стерилизация отрезков трубочек из синтетических материалов после предстерилизационной очистки сопровождалась неблагоприятными результатами, аналогичными тем, которые были получены с биологическими индикаторами.
Число жизнеспособных спор в биологическом индикаторе после стерилизации является вероятностной величиной, а их обнаружение зависит от числа индикаторов в стерилизационной камере, качества питательной среды и длительности культивирования при подходящей температуре.

Адекватным инструментом оценки эффективности стерилизации являются биологические индикаторы, которые в значительной мере имитируют обсемененные микроорганизмами медицинские изделия, подвергающиеся стерилизации. Последняя избыточна в том смысле, что она рассчитана на уничтожение такого количества микробов, которые обычно на изделиях не обнаруживают, но которые в принципе хоть и в редких случаях исключить нельзя . Поэтому биологические индикаторы содержат устойчивые к стерилизующему агенту споры в количестве на 2-3 порядка выше того количества, которое обычно встречается на стерилизуемых изделиях . Такой подход диктуется массовым применением стерилизации в медицинской практике и необходимостью исключения риска заражения больных и здоровых за счет неэффективной стерилизации.

В связи с тем, что большинство исследователей придерживается убеждения, что логарифм числа микроорганизмов в биологическом индикаторе или на медицинских изделиях является линейной функцией времени стерилизации, то временные рамки могут быть рассчитаны с достаточной определенностью . К настоящему времени в практике применяются несколько видов стерилизации — паровая, горячевоздушная, газовая, радиационная, лучевая и некоторые другие. Известны крупные производители стерилизационной аппаратуры — «МММ», «Луки», «Джонсон и Джонсон» и др.

Мы задались целью определить оптимальные условия для применения биологических индикаторов в процессе стерилизации. Основным объектом исследований явились биологические индикаторы для оценки паровой стерилизации. Биологические индикаторы готовились и оценивались в нашей лаборатории в соответствии с принятыми нормами . Методические особенности настоящего исследования описаны в ходе изложения полученных результатов.

Всякий раз, когда готовится очередная партия спор Bacillus stearothermophilus для биологических индикаторов, контролирующих паровую стерилизацию, испытывают их термоустойчивость. Требуется, чтобы готовые биологические индикаторы (примерно 10 6 спор в индикаторе) содержали жизнеспособные споры после 5-минутной паровой стерилизации при 120-121 о С, но после 15 минутной стерилизации при указанных условиях таковых не содержали. Производственные серии биологических индикаторов, которые выпускает наше учреждение, отвечают этим требованиям. Наш опыт охватывает уже свыше 70 производственных серий спор В. stearothermophilus, из которых были изготовлены миллионы биологических индикаторов. Каждую серию биологических индикаторов неоднократно проверяли на термоустойчивость, в связи с чем накопился изрядный материал. Мы смогли убедиться в том, что к 15 минутам пребывания в автоклаве при 121 о С обычно жизнеспособные споры в биологических индикаторах не обнаруживаются, однако в редких случаях из 10 индикаторов (как правило, такое число индикаторов брали на одну экспозицию) 1 или 2 теста содержали живые споры.

В международных стандартах рекомендуется для определения числа спор в биологических индикаторах после разных экспозиций при 120-121 о С производить высевы содержимого индикаторов на плотную питательную среду, а затем культивировать в термостате и подсчитывать число колоний. Такую методику рекомендуют для тех экспозиций, где предполагается обнаружить число колониеобразующих единиц (КОЕ) больше 50 и меньше 1000 .

Для тех экспозиций, при которых предполагается среднее число спор в биологическом индикаторе менее 1 (то есть не в каждом индикаторе будут обнаружены жизнеспособные споры), рекомендовано использовать для подсчетов распределение редких и случайных событий — распределение Пуассона .

Ниже приведен способ применения распределения Пуассона для указанных целей.
Р х = e -m * m x /x!
где Р х — доля биологических индикаторов с конкретным числом жизнеспособных спор х;
х — конкретное число спор в индикаторе;
х! произведение целых чисел в последовательности х (х-1) (х-2)…[х-(х-1)];
m — среднее число спор в группе биологических индикаторов;
е — экспонента.

Если некоторое число биологических индикаторов не содержит жизнеспособных спор (х = 0), тогда
P 0 = k/n,
где k — число биологических индикаторов, не содержащих живые споры;
n — число биологических индикаторов в группе.

Прологарифмируем приведенное уравнение распределения Пуассона:
ln Р х = ln (e -m * m x /x!).

Учитывая, что 0! = 1, а m 0 = 1, то (ln k — ln n) = -m; m = ln n — ln k.

Иными словами, среднее число спор на один биологический индикатор в группе равно разности натуральных логарифмов числа всех биологических индикаторов и числа биологических индикаторов без живых спор. Справедливость приведенного способа определения среднего числа спор на один биологический индикатор подтверждается высевами на агар (рис. 8).

Рис. 8. Результаты испытания биологических индикаторов со спорами, высушенными на хроматографической бумаге (10 6 спора биологическом индикаторе, паровая стерилизация 121 о С — 45 мин., индикатор типа Attest). По оси ординат — число биологических индикаторов. Левый столбик — результаты испытаний для обычных биологических индикаторов, правый — для биологических индикаторов с новой питательной средой. Заштрихованная часть столбиков — число биологических индикаторов с жизнеспособными спорами.

Приводим пример расчетов. В стерилизационную камеру поместили 20 биологических индикаторов, а после экспозиции в каждый биологический индикатор прилили цветную питательную среду (используемые в нашей лаборатории серии питательной среды реагировали изменением цвета на присутствие единичных живых спор в биологическом индикаторе при культивировании в термостате при 55 o С) . Из 20 использованных в примере биологических индикаторов изменение сиреневого цвета питательной среды на желтый отмечено в 14, а в 6 индикаторах цвет среды остался прежним после культивирования в термостате. Отсюда m = (ln 20 — ln 6) = 2,996 — 1,792 = 1,204. Теперь если мы хотим включить эту величину m в систему координат десятичного логарифма числа спор в биологических индикаторах и времени необходимо взять lg m = lg 1,204 = 0,081.

При многочисленных определениях термоустойчивости спор изредка наблюдалось такое явление, когда 1-2 биологических индикатора из 10 содержали жизнеспособные споры после 15-минутного автоклавирования. В некоторых экспериментах мы расширили набор экспозиций, включив экспозиции в 20, 25, 30 и 35 мин. автоклавирования. В некоторых, хотя и редких случаях, мы отмечали существование живых спор в биологических индикаторах и после относительно длительных экспозиций автоклавирования. Трактовка подобных неожиданных результатов как случайных не могла быть признана правомочной, так как не имела объяснений. Наиболее правдоподобным выглядело предположение о существовании в популяции спор термоустойчивых особей, которые поэтому остаются жизнеспособными после длительных экспозиций. Однако это предположение не подтвердилось, так как потомство спор из пожелтевших биологических индикаторов после 20-40 — минутного автоклавирования обладали термоустойчивостью того же уровня, что и исходная взвесь спор .

К описанной проблеме прибавилась и другая, связанная с сомнениями в линейной зависимости логарифма числа спор в биологическом индикаторе от времени стерилизации . Складывалось впечатление, что если и наблюдается линейная зависимость, то она проявляется лишь на отдельных участках графика. Что касается сроков изменения окраски питательной среды в биологических индикаторах после автоклавирования, то в практической деятельности они ограничивались 48 часами (такой срок рекомендован в инструкциях, имеющих хождение в России, США и европейских странах, хотя еще 10 лет тому назад, когда не использовались цветные среды, наблюдение за появлением мутности в питательном бульоне длилось не менее 7 дней). Однако в наших экспериментах было замечено, что изменение цвета питательной среды при культивировании в термостате наступает не только в первые 48 час., но и в последующие дни, особенно в тех биологических индикаторах, которые относительно долго пребывали в стерилизационной камере.

Если в прежние годы мы использовали в качестве носителя спор инсулиновые флаконы, то в последнее время перешли на пробирки Эппендорфа из полипропилена емкостью 1,5 мл . Эта емкость оказалась гораздо удобнее в качестве носителя спор, чем инсулиновые флаконы.

Учитывая все вышесказанное, мы решили применить в настоящем исследовании биологические индикаторы, приготовленные следующим образом. Взвесь спор, которую мы использовали для изготовления производственных серий биологических индикаторов, разводили дистиллированной водой таким образом, чтобы в 0,02 мл оказалось нужное число спор, которое и вносилось в каждую пробирку Эппендорфа. Затем биологические индикаторы оставляли на 24 час. при 37 о С для высушивания спор, после чего биологический индикатор (пробирку Эппендорфа оставляли открытой) помещали в специальный пакет фирмы Wipack medical, снабженный бумажным ранним индикатором процесса стерилизации. После автоклавирования в каждый индикатор приливали 0,5 мл цветной питательной среды и помещали в термостат при 55 о С на 7 дней с ежедневной регистрацией изменения цвета питательной среды на желтый. Если это случалось, то признавали существование жизнеспособных спор на момент окончания времени автоклавирования.

Легко убедиться в том, что число биологических индикаторов, в которых удавалось обнаружить жизнеспособные споры, зависело от исходного числа индикаторов, помещенных в стерилизационную камеру. Если биологические индикаторы имитируют обсемененные микроорганизмами медицинские изделия, то мы вправе заподозрить, что доля биологических индикаторов с жизнеспособными спорами после стерилизации может соответствовать доле оставшихся нестерильными медицинских изделий. В этом и есть смысл применения контроля стерилизации с помощью биологических индикаторов. Но их число не может быть увеличено до больших чисел, во всяком случае до числа стерилизуемых медицинских изделий. При принятых в России нормах в относительно небольших автоклавах размещают по 5 биологических индикаторов, а в больших — до 13 . Нам представляется, что обозначенного числа биологических индикаторов для изучения пороков стерилизации явно недостаточно, поэтому в представленных ниже экспериментах для контроля стерилизации использовали гораздо большее число индикаторов.

Итак, в наших экспериментах использовали не только большее, чем обычно число биологических индикаторов, но и дольше наблюдали их после стерилизации во время культивирования в термостате. Наконец, мы использовали не только то число спор в индикаторе, которое рекомендовано в стандартах (10 6 спор), но и несколько меньшее (10 5), и несколько большее (10 7). В стерилизационную камеру автоклава в большинстве случаев кроме биологических индикаторов ничего не помещали, чтобы избежать упреков в избыточном заполнении камеры.

Данные, представленные на рис. 1, свидетельствуют о том, что единичные индикаторы содержали жизнеспособные споры даже после 120-минутного автоклавирования (само собой разумеется, что при использовании 5 или 10 биологических индикаторов этот факт не был бы «замечен»). В данном опыте использовали споры двух штаммов В. stearothermophilus — ВКМ-718 (производственный штамм, применяющийся не только в России, но и в других странах, а также недавно выделенный штамм КК , обладающий повышенной термоустойчивостью). Неожиданным оказалось то обстоятельство, что иногда индикаторы с жизнеспособными спорами встречались после 45 или 60 мин. автоклавирования не реже, чем после 30-минутной стерилизации.

Споры В. stearothermophilus
ВК-718 КК
10 7 2,2*10 6
10 6 1,1*10 6
10 5 0,7*10 6

Рис. 1. Влияние стерилизации паром в автоклаве ВК-75 (121 o С без вакуума в стерилизационной камере) на жизнеспособность спор В. stearothermophilus (штаммы ВК-718 и КК). По оси ординат — число биологических индикаторов на каждую экспозицию (25 биологических индикаторов), по оси абсцисс — время стерилизации (мин.). Закрашенная часть столбиков — число биологических индикаторов с жизнеспособными спорами.

Расхождение полученных данных с ожидаемыми заставило нас разработать новую питательную среду, возможности которой в проявлении жизнеспособных спор в биологических индикаторах, прошедших стерилизацию, были гораздо выше, чем у прежней питательной среды.

Наряду с прежней питательной средой испытали две новых рецептуры, причем одна из них оказалась весьма информативной (рис. 2).


Рис. 2. Влияние питательной среды на проявление жизнеспособности спор В. stearothermophilus в биологических индикаторах (носители — инсулиновые флаконы или пробирки Эппендорфа) после стерилизации паром (121 o С — 45 мин.). n — число биологических индикаторов в каждой экспозиции, закрашенная часть столбиков — число биологических индикаторов с жизнеспособными спорами. А — эксперименты с производственной серией 71, число спор в биологическом индикаторе 3,4*10 5 , Б — эксперименты с производственной серией 69, число спор в биологическом индикаторе 10 6 . Номерами 1, 2, 3 обозначены пробы с разными питательными средами.

Таким образом, наряду с повышенным числом биологических индикаторов, удлинением сроков наблюдения за культивируемыми в термостате индикаторами, использовали не только принятую питательную среду, но и новую среду, которая оказалась более информативной, чем прежняя. Не лишне упомянуть, что в один пакет помещали три биологических индикатора с разным числом спор, пакеты размещали в стерилизационной камере случайным образом, после стерилизации биологические индикаторы одновременно заливали одной и той же серией питательной среды и оставляли в одном и том же термостате. Если употребляли прежнюю и новую питательные среды, то число пакетов удваивалось.

Если в прежних опытах автоклавировали биологические индикаторы при 121 o С в течение 45 мин., то в опыте, представленном на рис. 3, биологические индикаторы стерилизовали паром при температуре 132 o С (оба режима осуществляли в автоклаве отечественного производства ВК-75).

Рис. 3. Влияние стерилизации паром при 132 o С на биологические индикаторы в зависимости от исходного числа спор в них (10 5 , 10 6 и 10 7 и времени автоклавирования биологических индикаторов (5, 10, 20, 40 и 60 мин.). По оси ординат — число биологических индикаторов в опыте. В каждой паре столбцов слева — результаты определения числа биологических индикаторов с жизнеспособными спорами при их культивировании в обычной питательной среде, справа — число биологических индикаторов с жизнеспособными спорами при их культивировании в новой питательной среде. Закрашенная часть столбика — число биологических индикаторов с жизнеспособными спорами.

В представленных на рис. 3 данных употребляли различные экспозиции, в числе их и ту (20 мин.), которая рекомендована в соответствующем режиме. Можно отметить, что с помощью новой питательной среды, а иногда даже и с применением прежней, удалось обнаружить жизнеспособные споры в биологических индикаторах после автоклавирования в течение 20-60 мин. Более того, складывается впечатление, что время автоклавирования в указанных на рис. 3 пределах, не очень заметно сказалось на доле биологических индикаторов с жизнеспособными спорами.

Полученные результаты анализа биологических индикаторов после стерилизации побудили нас охарактеризовать те режимы паровой стерилизации, которые приняты в России (рис. 4). Первые два режима осуществлены в аппарате ВК-75, а третий и четвертый — в аппарате фирмы «МММ» (Германия). Само собой разумеется, что все стерилизационные аппараты, использованные в наших исследованиях, находились в полной технической исправности.

Рис. 4. Влияние питательной среды на результаты бактериологического контроля стерилизации. По оси ординат — число биологических индикаторов в опыте. Над каждой парой столбиков указано исходное число спор в биологических индикаторах. В каждой паре столбцов слева — результаты определения числа биологических индикаторов с жизнеспособными спорами при их культивировании в обычной питательной среде, справа — число биологических индикаторов с жизнеспособными спорами при их культивировании в новой питательной среде. Закрашенная часть столбика — число биологических индикаторов с жизнеспособными спорами. Режимы стерилизации приведены над столбиками.

Легко заметить, что ни один из испытанных режимов стерилизации не сопровождался полным освобождением биологических индикаторов от жизнеспособных спор В. stearothermophilus, особенно при употреблении новой питательной среды. Нужно отметить, что процент биологических индикаторов с жизнеспособными спорами несколько увеличивается, если наблюдение за цветом прежней питательной среды в термостате вести не 48 час., а 72 час. (рис. 5, по данным рис. 1 для штамма ВКМ-718).

Рис. 5. Динамика пророста биологических индикаторов (10 5 , 10 6 , 10 7 спор в биологических индикаторах) после автоклавирования при 121 o С в течение 30, 45, 60, 90 и 120 мин. На каждую пробу брали 25 биологических индикаторов. Учет пророста биологических индикаторов вели через 18, 24, 48 и 72 часа их культивирования при 55 o С. Столбики указывают число биологических индикаторов с жизнеспособными спорами на данный срок учета результатов.

Применение новой питательной среды явно ускоряет после стерилизации появление максимального числа биологических индикаторов с жизнеспособными спорами при культивировании в термостате при 55 o С (рис. 6).

Рис. 6. Динамика пророста биологических индикаторов (по 10 5 или 10 6 спор в биологических индикаторах) после автоклавирования (121 o С, 45 мин.). На каждую пробу брали 20 биологических индикаторов. Учет пророста вели через 18, 24, 48 или 120 час. культивирования при 55 o С в разных питательных средах.

Оказалось, что и газовая стерилизация с помощью формальдегида (аппарат фирмы «МММ», Германия) не освобождает биологические индикаторы от жизнеспособных спор В. stearothermophilus (рис. 7.)

Стерилизация формальдегидом 75 o С — 10 мин.




Рис. 7. Влияние питательной среды на результаты бактериологического контроля стерилизации. Обозначения в верхней части рисунка — те же, что и на рис. 4. В нижней части рисунка представлена динамика пророста биологических индикаторов. Под столбиками — время культивирования в сутках. Обозначения — те же, что и на рис. 5.

Тем не менее результаты стерилизации формальдегидом, по крайней мере при использовании прежней питательной среды, выглядят несколько лучше, чем результаты контроля паровой стерилизации.

В наших опытах споры в биологических индикаторах высушивались непосредственно в пробирках Эппендорфа, в то время как в американских биологических индикаторах (Attest) фирмы «3М» споры высушивались на полосках бумаги и в таком виде вносились в пластмассовые емкости, которые снабжены ампулой с цветной питательной средой. После стерилизации ампулу разбивают простым нажатием на корпус индикатора, питательная среда изливается на бумагу с высушенными спорами, а затем при культивировании в термостате удается зафиксировать жизнеспособные споры, если цвет среды меняется на желтый . Мы изготовили некоторое подобие индикатора Attest и проявили их с прежней и новой питательными средами. Оказалось, что применение новой питательной среды заметно улучшило результаты биологического индикатора, аналогичного Attest.

Итак, в наших экспериментах мы, как правило, вносили 120 биологических индикаторов (каждый пакет с биологическими индикаторами занимал объем около 0,1 л) с разной исходной концентрацией спор. Половину индикаторов исследовали с прежней питательной средой, а другую половину — с новой. В большинстве случаев те биологические индикаторы, которые исследовали с помощью новой питательной среды, после автоклавирования вначале заполнялись небольшим объемом жидкости. Половина этого объема использовалась для засева на питательный агар, а к остальной части добавляли питательную среду. Культивирование осуществляли в термостате при 55 o С. Выросшие колонии подсчитывали.

Эти наблюдения послужили основанием для сопоставления распределения чашек Петри с агаром по числу выросших колоний с теоретическим распределением Пуассона (наличие чашек без выросших колоний позволяло исчислить среднее значение числа колоний на одну чашку, а затем по таблицам определить теоретическое распределение и сопоставить его с наблюдаемым в эксперименте). Мы исходили из положения о том, что сумма пуассоновских распределений есть тоже пуассоновское распределение; в подсчеты включали данные по всем трем группам биологических индикаторов (10 5 , 10 6 , 10 7). Поэтому в каждой группе оказалось 60 чашек Петри.

Из данных, представленных на рис. 9., следует, что при всех изученных режимах распределение чашек Петри по числу выросших колоний соответствовало распределению Пуассона. А это, в свою очередь, говорит о том, что оставшиеся после стерилизации жизнеспособные споры представляли собой отдельные независимые друг от друга сущности. Исключение составили данные по режиму паровой стерилизации 121 o С — 45 мин., где теоретическая кривая существенно отклонялась от полученной в эксперименте. В этом последнем случае приходится признать, что указанные расхождения связаны с образованием комочков или глыбок спор в биологическом индикаторе, которые распадаются на отдельные споры при рассеве содержимого на поверхности агара. Так или иначе, но не возникает сомнения, что после стерилизации жизнеспособными в биологических индикаторах остаются единичные споры, в то время как подавляющая масса спор погибает. По крайней мере такая картина вырисовывается при избранном числе биологических индикаторов, помещенных в стерилизационную камеру.

Рис. 9. Соответствие фактических материалов (число колоний на агаре) при разных режимах паровой и газовой стерилизации распределению редких и случайных событий. По оси ординат — общее число биологических индикаторов стерилизации (суммирование результатов для трех групп биологических индикаторов с 10 5 , 10 6 и 10 7 спорами). По оси абсцисс — число КОЕ (колониеобразующих единиц), выросших на агаре после посева материала биологических индикаторов. Сплошная линия — фактические данные, прерывистая линия — расчетная линия в соответствии с распределением случайных и редких событий (отсутствие на графике прерывистой линии указывает на совпадение расчетных и экспериментальных данных).

Одним из поражающих воображение парадоксов является существенное отклонение экспериментальных данных от линейной зависимости логарифма числа спор в биологических индикаторах от времени стерилизации. Совершенно не соответствовали сложившимся представлениям данные об обнаружении жизнеспособных спор в более поздние от начала стерилизации сроки. И уж совсем не укладывались в сознание данные о более частом обнаружении жизнеспособных спор в более поздние сроки, чем в ранние, что отмечалось в некоторых экспериментах. Случалось даже такое, когда при 15-минутной экспозиции споры в биологических индикаторах нежизнеспособны, а после 45-минутной экспозиции в том же опыте обнаруживаются хоть и единичные, но жизнеспособные споры.

В настоящей работе мы представляем свою интерпретацию процесса гибели спор при стерилизации. Приводимое здесь предположение не имеет пока достаточных доказательств, однако объясняет упомянутый выше парадокс.

Мы предполагаем, что зависимость логарифма числа спор в биологических индикаторах от времени стерилизации носит не линейный, а волнообразный характер. По данным рис. 1 мы дали свою интерпретацию зависимости логарифма числа спор от времени стерилизации, воспользовавшись теми средними величинами числа спор в биологических индикаторах, которые были исчислены с помощью распределения Пуассона (рис. 11, 12). Но вначале мы представляем зависимость зоны определения средних величин от числа биологических индикаторов (рис. 10).

Рис. 10. Область применения распределения Пуассона для определения средних значений (m) при различном числе биологических индикаторов в группе (числа в середине рисунка).

Рис. 11. Влияние стерилизации паром в автоклаве ВК-75 (121 o С без вакуума в стерилизационной камере) на жизнеспособность спор В. stearothermophilus, штамм ВК-718. Волнообразные кривые — интерпретация фактических данных. По оси ординат — десятичный логарифм средней концентрации спор в биологическом индикаторе, по оси абсцисс — время стерилизации (мин.). Горизонтальные прямые ограничивают область применения распределения Пуассона для определения средних значений.

Рис. 12. Влияние стерилизации паром в автоклаве ВК-75 (121 o С без вакуума в стерилизационной камере) на жизнеспособность спор В. stearothermophilus, штамм КК. Волнообразные кривые — интерпретация фактических данных. По оси ординат — десятичный логарифм средней концентрации спор в биологическом индикаторе, по оси абсцисс — время стерилизации (мин.). Горизонтальные прямые ограничивают область применения распределения Пуассона для определения средних значений.

Для определения средней величины необходимо иметь биологические индикаторы без жизнеспособных спор, а для обозначения границ зоны значений средних нужно, чтобы хотя бы один биологический индикатор содержал жизнеспособные споры, или, напротив, чтобы хотя бы один биологический индикатор оказался без жизнеспособных спор. Из сопоставления различных зон можно заключить, что с увеличением числа биологических индикаторов в наибольшей мере увеличиваются возможности нижней зоны, в то время как верхняя ее часть расширяется незначительно. Распределение Пуассона табулировано, а использование вышесказанного позволяет рассчитать необходимое число биологических индикаторов, которое позволяет надеяться на обнаружение гораздо большего числа жизнеспособных спор после стерилизации.

Представление фактических данных с помощью волнообразных кривых позволяет понять, почему в некоторых экспериментах столь причудливо выстраиваются на графиках биологические индикаторы с жизнеспособными спорами. Ведь выбор точек на оси времени носит случайный характер, не связанный с закономерностями гибели спор, не учитывающий предполагаемый волнообразный характер. Более того, вполне может случиться, что нижняя. часть волны в районе 15 мин. может оказаться за пределами возможности обнаружения в биологических индикаторах (при избранном их количестве) жизнеспособных спор, в то время как при более длительной экспозиции выбор временной точки совпал с верхней частью волны и позволил обнаружить биологические индикаторы с жизнеспособными спорами.

Мы полагаем, что зависимость между логарифмом числа спор в биологическом индикаторе от времени стерилизации отражает затухающий волнообразный автоколебательный процесс, связанный с тем, что не только споры, но и окружающие их условия определяют результат стерилизации.

В нижеследующей таблице собраны результаты контроля различных видов стерилизации с помощью биологических индикаторов в аппаратах, используемых в практических лечебных учреждениях по тем режимам, которые предусмотрены существующими стандартами. Мы использовали полный цикл стерилизации, значительное число биологических индикаторов, длительное их культивирование после стерилизации, прежнюю и новую питательные среды.

Сводная таблица результатов биологического контроля стерилизации


п/п
Стерилизационный аппарат Стерилизация Биологические индикаторы
наименование фирма-
производитель,
страна
год
выпуска
объем
стерили-
зационной
камеры
вид режим тест-
культура
число
спор
число
индика-
торов в
стерилизац.
% с
жизнеспо-
собными
спорами
после
стерилизац.
обычная
питат.
среда
новая
питат.
среда
1. ГК-100-ЗМ Тюменский з-д
медоборудования,
Россия
1993 100 л Паровая 121 o С,
45 мин.
В. stearo-
themophilus
10 6 40 0 10
2. « « « « « « « « 40 10 25
3. BK-75 « « 75 л « « « 3*10 5 120 20 45
4. « « « « « « « 10 6 60 25 65
5. « « « « « « « 10 5 80 25 75
10 6 80 3 100
10 7 80 13 100
6. « « « « « « « 10 5 75 0 7
10 6 75 0 8
10 7 75 20 20
7. « « « « « « « 10 5 75 0 12
10 6 75 0 13
10 7 75 20 22
8. ГК-100-ЗМ « « 100 л « « « 10 5 40 15 20
10 6 40 0 15
10 7 40 0 35
9. BK-75 « 1992 75 л « 121 o С,
45 мин.
« 10 5 40 0 5
10 6 40 0 25
10 7 40 0 25
10. « « « « « « « 10 6 40 20 50
10 7 40 5 60
11. BK-75 « 1992 75 л Паровая 121 o С,
45 мин.
В. stearo-
themophilus
10 5 40 30 95
10 6 40 50 90
10 7 40 15 100
12. « « « « « « « 10 4 40 35 75
10 6 40 25 35
10 7 40 50 40
13. ГК-100-3М**) « 1988 100 л « « « 10 5 40 10 10
10 6 40 10 10
10 7 40 10 15
14. ГК-100-3М**) « « « « « « 10 5 40 5 0
10 6 40 0 10
10 7 40 5 0
15. ГКД-560 «ЛАД»,
Россия
1996 560 л « 120 o С,
20 мин.
10 5 40 10 5
10 6 40 55 10
10 7 40 65 55
16. Секурокс «МММ»,
Германия
1993 0,5 м 3 « « « 10 5 40 15 30
10 6 40 20 45
17. « « « « « « « 10 5 40 25 70
10 6 40 10 75
18. « « « « « « « 10 5 40 10 80
10 6 40 0 80
10 7 40 10 75
19. Castle
м/с 3622
USA 1997 680 л « « « 10 5 40 0 0
10 6 40 0 5
10 6*) 0 0
10 7 40 0 0
20. Селектомак «МММ»,
Германия
1993 100 л Паровая « « 10 5 40 0 0
10 6 40 0 10
10 7 40 5 20
21. ГК-100-3М**) Тюм. з-д
медооор.,
Россия
1993 100 л « 132 o С,
20 мин.
« 10 5 40 0 0
10 6 40 0 5
10 7 40 10 0
22. ВК-75 « 1992 75 л « « « 10 5 40 5 40
10 6 40 5 60
10 7 40 5 75
23. Селектомак «МММ»,
Германия
1993 100 л Паровая 134 o С,
5 мин.
В. stearo-
themophilus
10 5 40 0 0
10 6 40 0 20
10 7 40 5 10
24. ГКД-560 «ЛАД»,
Россия
1996 560 л Паровая 134 o С,
5 мин.
« 10 5 40 45 25
10 6 40 50 35
10 7 40 35 100
25. Секурекс «МММ»,
Германия
1993 500 л « « « 10 5 40 20 55
10 6 40 20 45
10 7 40 10 70
26. Castle
м/с 3622
USA 1997 680 л « 134 o С,
10 мин.
« 10 5 40 0 0
10 6 40 0 20
10 6*) 20 0
10 7 40 20 25
27. « « « « « « « 10 5 40 0 25
10 6 40 5 15
10 7 40 5 30
28. Комбимак «МММ»,
Германия
1993 70 л Газовая
(формаль-
дегид)
75 o C,
10 мин.
« 10 5 40 5 20
10 6 40 10 45
10 7 40 5 20

Примечание: *) — Для контроля применили биологические индикаторы Biosign фирмы Castle, содержащие фирменную питательную среду.
**) — Накануне испытаний поставлена новая стерилизационная камера.

Самым общим признаком результатов контроля стерилизации является то, что не удалось убедиться в стерильности всех биологических индикаторов по окончании времени стерилизации. Таким образом, этот важнейший контроль свидетельствует о неэффективности в принятом смысле стерилизации, причем наиболее надежной паровой стерилизации. Так как доза 10 7 спор в биологическом индикаторе может быть признана чрезмерно высокой, то целесообразно рассмотреть отдельно результаты контроля стерилизации биологическими индикаторами, содержавшими 10 5 и 10 6 спор. При использовании новой питательной среды какая-то часть биологических индикаторов после стерилизации во всех случаях содержала жизнеспособные споры. Если же использовали прежнюю питательную среду, то в трех случаях при контроле аппарата ВК-75 (30%) биологические индикаторы не содержали жизнеспособных спор. Чаще подобные результаты отмечены при контроле аппаратов зарубежного производства и это может служить некоторым указанием на качественное превосходство над российскими автоклавами.

Причины сложившейся ситуации неясны, как и возможные предложения по совершенствованию стерилизации. Что касается применения бумажных индикаторов стерилизации, то вряд ли следует рассчитывать на большее, нежели контроль состояния некоторых технических характеристик стерилизационного аппарата, особенно вначале процесса. Полное доверие показаниям бумажных индикаторов может способствовать ложному заключению об эффективной стерилизации.

До сих пор речь шла о судьбе биологических индикаторов в процессе стерилизации, что может не во всех случаях отражать особенности реальной стерилизации медицинских изделий. Для стерилизации в качестве «медицинских изделий» брали отрезки трубочек из поливинилхлорида длиной в 1 см, после тщательной промывки их обсеменяли спорами В. stearothermophilus в объеме 0,02 мл, высушивали и подвергали предстерилизационной очистке кипячением в 2% растворе соды в течение 15 мин. . После отмывки в стерильной дистиллированной воде отрезки трубочек на следующий день стерилизовали в пакетах (121 o С — 45 мин.), после чего каждый отрезок помещали в стерильную пробирку Эппендорфа и заливали питательной средой. Культивирование отрезков проводили в термостате при 55 o С. Контрольные отрезки обсеменяли спорами, но не подвергали предстерилизационной обработке. Иными словами, в этом опыте подражали экспериментам с биологическими индикаторами.

Полученные результаты поражают своей неожиданностью — отрезки трубочек, обработанные раствором соды при 100 o С, оказались после стерилизации столь же обсемененными, что и не подвергавшиеся предварительной очистке, которая в настоящее время занимает важное место в методике стерилизации .

Рис. 13. Результаты стерилизации отрезков трубки из поливинилхлорида после их предстерилизационной очистки и без нее. В каждой паре столбиков слева — число отрезков трубки с жизнеспособными спорами при культивировании с обычной питательной средой, справа — с новой питательной средой. Цифры над столбиками — число спор В. stearothermophilus, нанесенных изначально на внутреннюю поверхность отрезков трубки.

В другом опыте отрезки трубочек из силиконовой резины размером в 1 см после тщательной промывки в дистиллированной воде обсеменяли спорами В. stearothermophilus, затем оставляли на 1 час при комнатной температуре. По окончании указанного времени опытные отрезки на 30 мин. погружали в 0,2% раствор дезинфицирующего средства «Септабик» , отрезки тщательно промывали в дистиллированной воде, просушивали на фильтровальной бумаге. Контрольные отрезки обсеменяли спорами, но не обрабатывали средством «Септабик». На следующий день все отрезки закладывали в пакеты и стерилизовали в автоклаве (121 o С — 45 мин.), после чего каждый отрезок помещали в пробирку Эппендорфа, заливали питательной средой и культивировали при 55 o С.

В опыте (рис. 14) результаты испытаний были несколько лучше, чем в предыдущем, так как наблюдалась все же разница в доле проросших опытных и контрольных отрезков трубочек из силиконовой резины, однако эти различия не были впечатляющими. Во всяком случае даже после предстерилизационной очистки стерилизация макетов медицинских изделий оказалась неэффективной. И это несмотря на то, что обрабатывать небольшие отрезки трубочек гораздо легче, чем большие и сложные изделия, где возможные места обсеменения микроорганизмами менее доступны для дезинфицирующих растворов.

Рис. 14. Результаты стерилизации отрезков силиконовой трубки после их предстерилизационной очистки и без нее. В каждой паре столбиков слева — число отрезков трубки с жизнеспособными спорами при культивировании с обычной питательной средой, справа — с новой питательной средой. Числа над столбиками — число спор В. stearothermophilus, нанесенных изначально на внутреннюю поверхность отрезков трубки.

Ввиду необычности полученных результатов необходимо убедиться в том, что не были допущены технические погрешности. На протяжении всего времени исследований и помещениях и в ламинарном боксе расставлялись чашки с питательным агаром, но ни разу бактерии В. stearothermophilus иыделены не были, как и не были выделены из питательной среды и других использованных ингредиентов (в каждом опыте делали посевы питательной среды и дистиллированной воды на 10 агаровых чашек и 10 пробирок Эппендорфа с питательной средой, но безрезультатно). Предположение о том, что число бактерий в биологических индикаторах возрастает во время высушивания, не подтвердилось (известно, что В. stearothermophilus не размножается при 37 o С).

Таким образом полученные результаты являются неутешительными, но все же, по крайней мере, для некоторых авторов ожидаемыми. Из всей огромной массы литературы по термоинактивации споровых бактерий, в том числе фундаментальных исследований , ближе всех к нашей трактовке стоит монография Мунблитн, Тальрозе и Трофимова , которые экспериментов не ставили и пользовались лишь данными литературы. Эти авторы, придерживающиеся объяснения термоинактивации спор за счет термоповреждений жизненно важных белков и сублетальных повреждений мембраны, высказали опасения относительно эффективности стерилизации: «…стандартные условия теплового воздействия (120 o С, 30 мин.) в некоторых случаях не обеспечивают высокой надежности стерилизации», «…существует принципиальная опасность восстановления и размножения в организме человека микроорганизмов, которые были признаны погибшими». По нашим данным даже такие облигатные и непатогенные термофилы как В. stearothermophilus способны к ограниченному размножению при 37 o С, если к питательной среде добавить кровь человека.

Не только биологические индикаторы изредка содержали жизнеспособные споры после стерилизации, но и макеты обсемененных спорами медицинских изделий. Более того, предстерилизационная обработка макетов раствором кипящей соды или 0,2% раствора препарата «Септабик» не сопровождалась достаточным эффектом — стерилизация была неэффективной.

Теперь задача заключается в том, чтобы разработать новые методы, которые смогут гарантировать эффективность стерилизации. Наше представление о кинетике стерилизационного процесса позволили апробировать новые методические предложения, которые оказались перспективными, но требуют разносторонней проверки.

Выводы

1. Распределение редких и случайных событий позволяет рассчитывать среднее число спор на один биологический индикатор для условий, когда число жизнеспособных спор мало и встречаются они далеко не в каждом индикаторе.

2. Имеется достаточно оснований, чтобы усомниться в линейном характере зависимости между логарифмом числа спор в биологических индикаторах и временем от начала стерилизации. Жизнеспособные споры были обнаружены в биологических индикаторах даже через 1-2 часа пребывания в автоклаве при регламентированной температуре.

3. В экспериментах по контролю паровой стерилизации применяли значительное число биологических индикаторов, высокоэффективную цветную питательную среду и недельный срок культивирования в термостате, что в конечном итоге позволило обнаруживать жизнеспособные споры в биологических индикаторах после стерилизации чаще, чем обычно и практически при большинстве употребляющихся в практике режимах.

4. При высевах содержимого биологических индикаторов после стерилизации на плотную питательную среду в ряде случаев обнаруживались единичные колонии В. stearothermophilus, причем в большинстве случаев распределение агаровых чашек Петри по числу колоний в точности соответствовало распределению Пуассона, а это означало, что жизнеспособные споры не зависят друг от друга и расположены изолированно и случайно.

5. В некоторых экспериментах процент биологических индикаторов с жизнеспособными спорами после длительных сроков стерилизации превышал таковой после коротких сроков стерилизации, что не находило удовлетворительного объяснения. Мы предположили волнообразный характер зависимости логарифма числа жизнеспособных спор в биологических индикаторах от времени стерилизации.

6. Контроль стерилизаторов, установленных в практических лечебных учреждениях, показал, что во всех случаях та или иная часть биологических индикаторов содержала жизнеспособные споры после стерилизации, а вероятность неудовлетворительных результатов анализа индикаторов оказалась гораздо выше той, которая рекомендована в стандартах.

7. Экспериментальная паровая стерилизация отрезков трубочек из синтетических материалов, обсемененных спорами, после предстерилизационной очистки закончилась обнаружением жизнеспособных спор у более, чем половины экземпляров, т. е. результатами, аналогичными тем, которые были получены с биологическими индикаторами.

8. Число жизнеспособных спор в биологическом индикаторе после стерилизации является вероятностной величиной, а их обнаружение, кроме всего прочего, зависит от числа индикаторов в стерилизационной камере.

Литература

1. Абрамова И.М. Новые разработки в области стерилизации изделий медицинского назначения. Дезинфекционное дело, 1998, №3, с. 25.
2. Большев А.Н., Смирнов Н.В. Таблицы математической статистики. М., 1965.
3. Вашков В.И. Антимикробные средства и методы дезинфекции при инфекционных заболеваниях. М., 1977.
4. Гутерман Р.Л. Средства контроля термической стерилизации изделий медицинского назначения. Дисс. канд. мед. наук. М., 1993.
5. Кашнер Д. Жизнь микробов в экстремальных условиях. М., 1981.
6. Леви М.И., Бессонова В.Я., Лившиц М.М. Применение цветных питательных сред в процессе контроля стерилизации. Клиническая лабораторная диагностика, 1993, № 2, с. 65-67.
7. Леви М.И. Анализ неблагоприятных результатов паровой и воздушной стерилизации. Дезинфекционное дело, 1996, № 4, с. 58-63.
8. Леви М.И. Значение контроля стерилизации с помощью бумажных индикаторов и биотестов. Дезинфекционное дело, 1997, № 3, с. 24-28.
9. Леви М.И., Сучков Ю.Г., Рубан Г.И., Мищенко А.В. Новые формы бактериальных тестов для контроля разных режимов стерилизации. Там же, с. 29-33.
10. Леви М.И., Сучков Ю.Г., Лившиц М.М. Оптимизация биотестов для контроля паровой стерилизации. Дезинфекционное дело, 1998, № 2, с. 30-33.
11. Леви М.И. Численное определение величины D, стерилизационного времени и выбор контрольных биотестов. Там же, с. 34-42.
12. Методические указания по контролю паровых и воздушных стерилизаторов. Минздрав СССР, от 28.02.91 № 15/6-5.
13. Мунблит В.Я., Тальрозе В.Л., Трофимов В.И. Термоинактивация микроорганизмов. М., 1985.
14. Под ред. Озерецковского Н.А. и Останина Г.И. Бактерийные и вирусные лечебно-профилактические препараты. Аллергены. Дезинфекционно-стерилизационные режимы поликлиник. С.-Петербург, 1998.
15. Сучков Ю.Г., Леви М.И., Бессонова В.Я. Новый термофильный штамм для бактериологического контроля паровой стерилизации (сообщение 1), Дезинфекционное дело, 1996, № 3, с. 28-33.
16. Biological systems for testing sterilizers — Part 1: General requirements. European standard, Draft pr EN 866-1.1995.
17. Farrell J., Rose A.N. Temperature effect on microorganisms. In: «Thermobiology», p. 147-218. Acad. press, London-New-York, 1967.
18. Graham G.S. Biological indicators for hospital and industrial sterilization, p. 54-72. In: «Sterilization of medical product». Johnson and Johnson. Moscow, 1991.
19. Greene V.W. Principles and practice of disinfection, preservation and sterilization. Oxford, 1982.
20. International standard ISO/DIS 14161. Sterilization of health care products — guidence for the selection, use and interpretation of results. 1998.
21. McCormick P.J., Scoville J.R. — патент USA № 4.743.537, 1988 г.
22. Medical devices — Estimation of the population of microorganisms on product. Part 2 guidence, pr EN 1174-2.1994 г.
23. Russel A.D. The destruction of bacterial spores. Acad. press, London-New-York, 1982.
24. Russel A.D. Fundamental aspects of microbial resistance to chemical and physical agents. In: «Sterilization of medical product», v. V, p. 22-42. Johnson and Johnson, 1991.
25. Sussman A., Halvorson H. Spores, their dormancy and germinatiom. New-York-London, 1967.
26. Wicks J.H., Foltz W.E. Европейский патент № 0414.968 A1, 1991 г.
27. Журавлева В.И., Большедворская З.Ф. Оценка питательных сред для культивирования тест-микроорганизмов, используемых при контроле эффективности стерилизации в автоклавах. Лабораторное дело, 1988, № 11, с. 63-64.
28. Калинина Н.М., Шилова С.В., Мотина Г.Л., Чайковская С.М. Изучение термоустойчивости спор культуры Вас. stearothermophilus, используемой для приготовления биоиндикаторов. Антибиотики, 1982, № 2, с. 117-120.
29. Калинина Н.М., Мотина ГЛ., Чайковская С.М., Шилова С.В. Приготовление биоиндикаторов для контроля эффективности процессов стерилизации. Антибиотики, 1983, № 10, с. 600-603.

Используют биологические индикаторы – известные микроорганизмы, наиболее устойчивые к данному способу обработки:

Споры Bacillus stearothermophilus для контроля эффективности автоклавирования

Bacillus subtilis – для контроля сухожаровой стерилизации

Физико-химические индикаторы – вещества, которые претерпевают видимые изменения (изменяют цвет, агрегатное состояние и т.д.) только при соблюдении правильного режима обработки.

Микробиологический контроль объектов, подвергшихся стерилизации в повседневной практике не производится. Его заменяет косвенный контроль – контроль работы стерилизаторов.

Для проведения микробиологического контроля производят посев кусочков материала, смывов с предметов, подвергшихся стерилизации, на среды, позволяющие обнаружить аэробные и анаэробные бактерии, грибы. Отсутствие роста после 14 дней инкубации в термостате свидетельствует о стерильности предмета

24. Определение понятий "дезинфекция", "антисептика". Основные методы дезинфекции. Микробиологический контроль эффективности дезинфекции.

Дезинфекция – обеззараживание объектов окружающей среды: уничтожение патогенных для человека и животных микроорганизмов с помощью химических веществ, обладающих антимикробными свойствами. В отличие от стерилизации дезинфекция приводит к гибели большинства, но не всех форм микробов и обеспечивает только снижение микробной контаминации (загрязнения), а не полное обеззараживание объекта.

Антисептика – комплекс лечебно-профилактических мероприятий, направленных на уничтожение микроорганизмов, способных вызвать инфекционный процесс на повреждённых или интактных участках кожи или слизистых оболочек, путем обработки микробицидными веществами – антисептиками.

Для дезинфекции применяют физические и химические ме­тоды.

I. Физические методы.

Воздействие высоких темпера­тур.

Кипячение. Шприцы, мелкий хирургический инструмента­рий, предметные и покровные стекла и некоторые другие пред­меты помещают в стерилизаторы, в которые наливают воду. Для устранения жесткости и повышения температуры кипяче­ния к воде добавляют 1-2 % раствор бикарбоната натрия. Кипячение производят не менее 30 мин. При кипячении не­которые вирусы (например, вирус гепатита В) и споры бакте­рий сохраняют жизнеспособность.

Пастеризация основана на антибактериальном действии температуры в отношении вегетативных клеток, но не бакте­риальных спор. Нагревание материала производится при тем­пературе 50-65 "С в течение 5-10 мин с последующим бы­стрым охлаждением. Обычно пастеризуют напитки и пищевые продукты (вино, пиво, соки, молоко и др.).


Воздействие ионизирующих излучений.

Ультрафи­олетовое излучение (УФ) с длиной волны 260-300 мкм обладает достаточно выраженным микробицидным действием, однако некоторые виды микробов и споры резистентны к УФ. Поэто­му УФ-облучение не способно обеспечить полного уничтоже­ния микрофлоры - стерилизацию объекта. Обработку УФ обыч­но используют для частичного обеззараживания (дезинфекции) крупных объектов: поверхностей предметов, помещений, воз­духа в медицинских учреждениях, микробиологических лабо­раториях и т.д.

Гамма-излучение обладает выраженным микробицидным дей­ствием на большинство микроорганизмов, включая вегетатив­ные формы бактерий и споры большинства видов, грибы, виру­сы. Применяют для стерилизации пластиковой посуды и меди­цинских инструментов одноразового использования. Следует иметь в виду, что обработка гамма-излучением не обеспечивает уничтожения таких инфекционных агентов, как прионы.

II. Химические методы. Это обработка объекта дезинфектантами - микробицидными химическими веществами. Некото­рые из этих соединений могут оказывать токсическое действие на организм человека, поэтому их применяют исключительно для обработки внешних объектов. В качестве дезинфектантов обычно используют:

§ перекись водорода,

§ формальдегид,

§ фенолы (3-5 % раствор фенола, лизола или карболовой кислоты),

§ йодофоры.

Выбор дезинфицирующего вещества и его концентрации зави­сят от материала, подлежащего дезинфекции. Дезинфекция может быть достаточной процедурой для обеззараживания только таких медицинских инструментов, которые не прони­кают через естественные барьеры организма (ларингоскопы, цистоскопы, системы для искусственной вентиляции легких). Некоторые вещества (борная кислота, мертиолат, глицерин) применяют как консерванты для приготовления лечебных и диагностических сывороток, вакцин и других препаратов.

25. Определение понятия "химиотерапия". Основные группы химиотерапевтических веществ. Механизмы антимикробного действия. Химиотерапевтический индекс.

Химиотерапия – лечение инфекционных и опухолевых заболеваний химическими препаратами, не являющимися продуктами реакции организма и возбудителя.

Применяют следующие препараты:

Препараты акридина (риванол, трипафлавин, акрицид, флавицид и др.) – при гноеродных заболеваниях, воспалит. процессах зева и носоглотки

Сульфаниламиды (стрептоцид, этазол, альбуцид, сульфадиметоксини др.) – при гноеродных заболеваниях, ангинах, скарлатине, роже, пневмонии, дизентерии, гонорее, анаэробной инфекции и др.; механизм действия состоит в том, что они представляют собой структурные аналоги парааминобензойной кислоты, т.е. являются микробными антиметаболитами

Диаминопиримидины (триметоприм, пириметамин, тетроксоприм) – также являются антиметаболитами, подменяя пиримидиновые основания; спектр действия шире

Нитрофураны (фуразолидон, фурациллин, фурадонин, фурагинид) – при кишечных инфекциях; блокируют ферментные системы микробной клетки

Хинолоны (неграм, нитроксолин, ципролет и др.) – нарушают различные этапы синтеза ДНК микробной клетки

Азолы (кандид, низорал, флуконазол и др.) – противогрибковые; механизмы действия – ингибирование биосинтеза стеролов клеточной стенки, ингибирование разл. внутриклеточных процессов, приводящее к накоплению перекиси водорода и повреждению клеточных органелл, ингибирование трансформации бластоспор в инвазивный мицелий (род Candida)

Противовирусные (интерферон и интерфероногены, дезоксирибонуклеаза и рибонуклеаза, бензамидазол и гуанидин, ремантадин, ацикловири др.)

Антибластомные (азотиприты, антиметаболиты, диэпоксиды и др.)

Антибиотики

Химиотерапевтический индекс (ХИ) равняется частному от деления терапевтической дозы препарата, уничтожающей возбудителя, на максимально переносимую организмом дозу: ХИ = min терапевтическая доза /max переносимая доза. Если индекс меньше 1, препарат может быть практически использован; если больше, то введение препарата в организм сопровождается токсическими явлениями. Такой препарат нельзя применять для лечения соответствующих инфекций.

Антимикробное (антибактериальное) действие антибиотиков измеряют в единицах действия (ЕД), содержащихся в 1 мл раствора препарата или в 1 мг химически чистого вещества. За единицу активности принимается то минимальное количество антибиотика, которое задерживает рост стандартного штамма определённого вида микроорганизма в строго определённых условиях. В 1 мг большинства антибиотиков содержится 1000 ЕД (но, например, в 1 мг бензилпенициллина содержится 1670 ЕД, нистатина – не менее 4000 ЕД).

Механизм действия антибиотиков – это изменения в структуре и обмене веществ и энергии микроорганизмов, которые ведут к гибели микроорганизмов, приостановке его роста и размножения:

1. Нарушение синтеза клеточной стенки бактерий (пенициллин, цефалоспорины)

2. Тормозят синтез белка в клетке (стрептомицин, тетрациклин, левомицетин)

3. Угнетают синтез нуклеиновых кислот в микробной клетке (рифампицилин)

4. Угнетают ферментные системы (грамицидин)

Поделиться: