В основу работы синхрофазотрона положен принцип. Что такое синхрофазотрон: принцип работы и полученные результаты

Ты - не раб!
Закрытый образовательный курс для детей элиты: "Истинное обустройство мира".
http://noslave.org

Материал из Википедии - свободной энциклопедии

Синхрофазотро́н (от синхро низация + фаза + элек трон) - резонансный циклический ускоритель с неизменной в процессе ускорения длиной равновесной орбиты. Чтобы частицы в процессе ускорения оставались на той же орбите , изменяется как ведущее магнитное поле , так и частота ускоряющего электрического поля. Последнее необходимо, чтобы пучок приходил в ускоряющую секцию всегда в фазе с высокочастотным электрическим полем. В том случае, если частицы ультрарелятивистские, частота обращения, при фиксированной длине орбиты, не меняется с ростом энергии, и частота ВЧ-генератора также должна оставаться постоянной. Такой ускоритель уже называется синхротроном .

Напишите отзыв о статье "Синхрофазотрон"

Примечания

См. также

Отрывок, характеризующий Синхрофазотрон

Мы вышли из дома вместе, как будто я тоже собиралась идти с ней на рынок, а за первым же поворотом дружно расстались, и каждая уже пошла своей дорогой и по своим делам…
Дом, в котором всё ещё жил отец маленькой Вэсты был в первом у нас строящемся «новом районе» (так называли первые многоэтажки) и находился от нас примерно в сорока минутах быстрой ходьбы. Ходить я очень любила всегда, и это не доставляло мне никаких неудобств. Только я очень не любила сам этот новый район, потому что дома в нём строились, как спичечные коробки – все одинаковые и безликие. И так как место это только-только ещё начинало застраиваться, то в нём не было ни одного дерева или любой какой-нибудь «зелени», и оно было похожим на каменно-асфальтовый макет какого-то уродливого, ненастоящего городка. Всё было холодным и бездушным, и чувствовала я себя там всегда очень плохо – казалось, там мне просто не было чем дышать...
И ещё, найти номера домов, даже при самом большом желании, там было почти что невозможно. Как, например, в тот момент я стояла между домами № 2 и № 26, и никак не могла понять, как же такое может быть?!. И гадала, где же мой «пропавший» дом № 12?.. В этом не было никакой логики, и я никак не могла понять, как люди в таком хаосе могут жить?
Наконец-то с чужой помощью мне удалось каким-то образом найти нужный дом, и я уже стояла у закрытой двери, гадая, как же встретит меня этот совершенно мне незнакомый человек?..
Я встречала таким же образом много чужих, неизвестных мне людей, и это всегда вначале требовало большого нервного напряжения. Я никогда не чувствовала себя комфортно, врываясь в чью то частную жизнь, поэтому, каждый такой «поход» всегда казался мне чуточку сумасшедшим. И ещё я прекрасно понимала, как дико это должно было звучать для тех, кто буквально только что потерял родного им человека, а какая-то маленькая девочка вдруг вторгалась в их жизнь, и заявляла, что может помочь им поговорить с умершей женой, сестрой, сыном, матерью, отцом… Согласитесь – это должно было звучать для них абсолютно и полностью ненормально! И, если честно, я до сих пор не могу понять, почему эти люди слушали меня вообще?!.

В 1957 году СССР осуществил научный и технический прорыв в нескольких областях: произвел успешный запуск искусственного спутника Земли, а за несколько месяцев до данного события в Дубне начал работать синхрофазотрон. Что это такое и для чего нужна подобная установка? Этот вопрос волновал не только граждан СССР в то время, но и весь мир. Разумеется, в научном кругу понимали, что это такое, но обычные граждане приходили в недоумение, когда слышали это слово. Даже сегодня большинство людей не понимают сути и принципа синхрофазотрона, хотя не раз слышали это слово. Давайте разберемся, что это за устройство и для чего применялось.

Для чего нужен синхрофазотрон?

Разрабатывали эту установку для изучения микромира и познания структуры элементарных частиц, законов их взаимодействия друг с другом. Сам способ познания был чрезвычайно прост: поломать частицу и посмотреть, что находится внутри. Однако как можно поломать протон? Для этого и был создан синхрофазотрон, который разгоняет частицы и ударяет их о мишень. Последняя может быть неподвижной, а в современном Большом адронном коллайдере (он является усовершенствованной версией старого доброго синхрофазотрона) мишень является подвижной. Там пучки протонов с огромной скоростью движутся друг к другу и ударяются.

Считалось, что эта установка позволит осуществить научный прорыв, открыть новые элементы и способы получения атомной энергии из дешевых источников, которые превосходили бы по эффективности обогащенный уран и являлись бы более безопасными и менее вредными для окружающей среды.

Военные цели

Конечно, военные цели также преследовались. Создание атомной энергии в мирных целях - это лишь оправдание для наивных. Не зря проект синхрофазотрона вышел с грифом "Совершенно секретно", ведь строительство этого ускорителя осуществлялось в рамках проекта создания новой атомной бомбы. С его помощью хотели получить усовершенствованную теорию ядерных сил, которая необходима для расчета и создания бомбы. Правда, оказалось все гораздо сложнее, и даже сегодня эта теория отсутствует.

Что такое синхрофазотрон простыми словами?

Если обобщить, то данная установка представляет собой ускоритель элементарных частиц, протонов в частности. Синхрофазотрон состоит из немагнитной закольцованной трубы с вакуумом внутри, а также мощных электромагнитов. Поочередно магниты включаются, направляя заряженные частицы внутри вакуумной трубы. Когда они с помощью ускорителей достигают максимальной скорости, их направляют в специальную мишень. Протоны в нее ударяются, разбивают саму мишень и разбиваются при этом сами. Осколки разлетаются в разные стороны и оставляют следы в пузырьковой камере. По этим следам группа ученых анализирует их природу.

Так было ранее, однако в современных установках (типа Большого адронного коллайдера) применяются более современные детекторы вместо пузырьковой камеры, которые дают больше информации об осколках протонов.

Сама по себе установка является достаточно сложной и высокотехнологичной. Можно сказать, что синхрофазотрон - это "дальний родственник" современного Большого адронного коллайдера. По сути, его можно назвать аналогом микроскопа. Оба эти прибора предназначаются для изучения микромира, вот только принцип изучения разный.

Подробнее об устройстве

Итак, мы уже знаем, что такое синхрофазотрон, а также то, что здесь частицы разгоняются до огромных скоростей. Как оказалось, для разгона протонов до огромной скорости необходимо создать разность потенциалов в сотни миллиардов вольт. К сожалению, сделать такое человечеству не под силу, поэтому частицы придумали разгонять постепенно.

В установке частицы двигаются по кругу, и на каждом обороте их подпитывают энергией, получая ускорение. И хотя подобная подпитка невелика, за миллионы оборотов можно набрать необходимую энергию.

В основу работы синхрофазотрона положен именно этот принцип. Разогнанные до небольших значений элементарные частицы запускаются в туннель, где располагаются магниты. Они создают перпендикулярное кольцу магнитное поле. Многие ошибочно полагают, что эти магниты ускоряют частицы, но на самом деле это не так. Они лишь меняют их траекторию, заставляя двигаться по окружности, однако не ускоряют их. Само ускорение происходит на определенных разгонных промежутках.

Разгон частиц

Подобный промежуток ускорения представляет собой конденсатор, на который подается напряжение с высокой частотой. Кстати, это основа всей работы данной установки. Пучок протонов влетает в данный конденсатор в момент, когда напряжение в нем равно нулю. По мере того как частицы пролетают по конденсатору, напряжение успевает возрасти, что подгоняет частицы. На следующем кругу это повторяется, так как частота переменного напряжения специально подбирается равной частоте обращения частицы по кольцу. Следовательно, синхронно и в фазе осуществляется ускорение протонов. Отсюда и название - синхрофазотрон.

Кстати, при таком способе ускорения есть определенный полезный эффект. Если вдруг пучок протонов летит быстрее необходимой скорости, то он влетает в разгонный промежуток при отрицательном значении напряжения, из-за чего немного притормаживает. Если скорость движения меньшая, то эффект будет обратным: частица получает ускорение и догоняет основной сгусток протонов. В результате плотный и компактный пучок частиц движется с одной скоростью.

Проблемы

В идеале частицы необходимо разогнать до максимально возможной скорости. И если протоны на каждом круге движутся быстрее и быстрее, то почему нельзя их разогнать до максимально возможной скорости? Причин несколько.

Во-первых, рост энергии предполагает увеличение массы частиц. К сожалению, релятивистские законы не позволяют ни один элемент разогнать выше скорости света. В синхрофазотроне скорость протонов практически достигает скорости движения света, что сильно увеличивает их массу. В результате их становится трудно удерживать на круговой орбите радиуса. Еще со школы известно, что радиус движения частиц в магнитном поле обратно пропорционален массе и прямо пропорционален величине поля. И так как масса частиц растет, то радиус необходимо увеличивать и делать магнитное поле сильнее. Эти условия и создают ограничения в реализации условий для исследования, так как технологии даже сегодня ограничены. Пока что не удается создать поле с индукцией выше нескольких тесла. Поэтому и делают туннели большой длины, ведь при большом радиусе тяжелые частицы на огромной скорости удается удерживать в магнитном поле.

Вторая проблема - движение с ускорением по окружности. Известно, что заряд, который движется с определенной скоростью, излучает энергию, то есть теряет ее. Следовательно, частицы при ускорении постоянно теряют часть энергии, и чем выше их скорость, тем больше энергии они расходуют. В какой-то момент наступает равновесие между получаемой энергией на участке разгона и потерей этого же количества энергии за один оборот.

Исследования, проводимые на синхрофазотроне

Теперь мы понимаем, какой принцип лежит в основе работы синхрофазотрона. Он позволил провести ряд исследований и совершить открытия. В частности ученые смогли изучить свойства ускоренных дейтронов, поведение квантовой структуры ядер, взаимодействие тяжелых ионов с мишенями, а также разработать технологию утилизации урана-238.

Применение результатов, полученных в ходе испытаний

Полученные по этим направлениям результаты применяются на сегодняшний день в строительстве космических кораблей, проектировании атомных электростанций, а также при разработке специального оборудования и робототехники. Из всего этого следует, что синхрофазотрон - такое устройство, вклад в науку которого переоценить сложно.

Заключение

В течение 50 лет подобные установки служат на благо науки и активно применяются учеными всей планеты. Ранее созданный синхрофазотрон и подобные ему установки (они создавались не только в СССР) являются всего лишь одним звеном в цепочке эволюции. Сегодня появляются более совершенные устройства - нуклотроны, обладающие огромной энергией.

Одним из самых совершенных среди подобных устройств является Большой адронный коллайдер. В отличие от действия синхрофазотрона, он встречными курсами сталкивает два пучка частиц, в результате чего выделяемая от столкновения энергия во много раз превышает энергию на синхрофазотроне. Это открывает возможности для более точного изучения элементарных частиц.

Пожалуй, теперь вы должны понимать, что такое синхрофазотрон и для чего он вообще нужен. Эта установка позволила сделать целый ряд открытий. Сегодня из него сделали ускоритель электронов, и на данный момент он работает в ФИАНе.

Технологии в СССР развивались стремительно. Чего только стоит запуск первого искусственного спутника Земли, за которым наблюдал весь мир. Мало кто знает, что в тот же 1957 год в СССР заработал (то есть был не просто достроен и введен в эксплуатацию, а именно запущен) синхрофазотрон. Слово это обозначает установку для разгона элементарных частиц. Практически каждый сегодня слышал про Большой адронный коллайдер - он представляет собой более новую и усовершенствованную версию описанного в данной статье устройства.

Что это - синхрофазотрон? Для чего он нужен?

Эта установка представляет собой большой ускоритель элементарных частиц (протонов), который позволяет более глубоко изучить микромир, а также взаимодействие этих самых частиц друг с другом. Способ изучения очень прост: разбить протоны на мелкие части и посмотреть, что находится внутри. Звучит все просто, но сломать протон - это чрезвычайно сложная задача, для решения которой потребовалось строительство столь огромного сооружения. Здесь по специальному тоннелю частицы разгоняются до огромных скоростей и затем направляются на мишень. Ударившись о нее, они разлетаются на мелкие осколки. Ближайший "коллега" синхрофазотрона, Большой адронный коллайдер, действует приблизительно по такому же принципу, вот только там частицы разгоняются в противоположных направлениях и ударяются не о стоячую мишень, а сталкиваются друг с другом.

Теперь вы немного понимаете, что это - синхрофазотрон. Считалось, что установка позволит сделать научный прорыв в области исследования микромира. В свою очередь, это позволит открыть новые элементы и способы получать дешевые источники энергии. В идеале хотели открыть элементы, превосходившие по эффективности и являющиеся при этом менее вредными и более простыми в утилизации.

Применение в военных целях

Стоит отметить, что создавалась данная установка для осуществления научно-технического прорыва, однако ее цели были не только лишь мирными. Во многом научно-технический прорыв обязан гонке военных вооружений. Синхрофазотрон был создан под грифом "Совершенно секретно", и его разработка и строительство проводились в рамках создания атомной бомбы. Предполагалось, что устройство позволит создать совершенную теорию ядерных сил, однако все оказалось не так просто. Даже сегодня эта теория отсутствует, хотя технический прогресс шагнул далеко вперед.

простыми словами?

Если обобщить и говорить понятным языком? Синхрофазотрон - это установка, где протоны можно разогнать до большой скорости. Она состоит из закольцованной трубы с вакуумом внутри и мощных электромагнитов, которые не дают протонам двигаться хаотично. Когда протоны достигают своей максимальной скорости движения, их поток направляется на специальную мишень. Ударяясь о нее, протоны разлетаются на мелкие осколки. Учены могут видеть следы разлетающихся осколков в специальной пузырьковой камере, и по этим следам они анализируют природу самих частиц.

Пузырьковая камера - это немного устаревшее устройство для фиксации следов протонов. Сегодня в подобных установках применяются более точные радары, дающие больше информации о движении осколков протонов.

Несмотря на простой принцип синхрофазотрона, сама эта установка является высокотехнологичной, и ее создание возможно только при достаточном уровне технического и научного развития, которым, безусловно, обладал СССР. Если приводить аналогию, то обычный микроскоп является тем устройством, предназначение которого совпадает с назначением синхрофазотрона. Оба прибора позволяют исследовать микромир, только последний позволяет "копнуть глубже" и имеет несколько своеобразный метод исследования.

Подробно

Выше была описана работа прибора простыми словами. Разумеется, принцип действия синхрофазотрона является более сложным. Дело в том, что для разгона частиц до высоких скоростей необходимо обеспечить разность потенциалов в сотни миллиарды вольт. Это невозможно даже на нынешнем этапе развитии технологий, не говоря уже о предыдущем.

Поэтому было принято решение разгонять частицы постепенно и гонять их по кругу долго. На каждом кругу протоны подпитывались энергией. В результате прохождения миллионов оборотов удалось набрать требуемую скорость, после чего их направляли в мишень.

Именно такой принцип применялся в синхрофазотроне. Сначала по тоннелю частицы двигались с небольшой скоростью. На каждом круге они попадали на так называемые промежутки ускорения, где получали дополнительный заряд энергии и набирали скорость. Эти участки ускорения являются конденсаторами, частота переменного напряжения которых равна частоте прохождения протонов по кольцу. То есть частицы попадали на участок ускорения при отрицательном заряде, в этот момент напряжение резко возрастало, что придавало им скорости. Если же частицы попадали на участок ускорения при положительном заряде, то их движение притормаживалось. И это - положительная особенность, так как из-за нее весь пучок протонов двигался с одной скоростью.

И так повторялось миллионы раз, и когда частицы приобретали требуемую скорость, их направляли в специальную мишень, о которую те разбивались. После группа ученых изучала результаты столкновения частиц. Вот по такой схеме синхрофазотрон и работал.

Роль магнитов

Известно, что в этой огромной машине по ускорению частиц применялись также мощные электромагниты. Люди ошибочно полагают, что они использовались для разгона протонов, но это не так. Разгонялись частицы с помощью специальных конденсаторов (участков ускорения), а магниты лишь удерживали протоны в строго заданной траектории. Без них последовательное движение пучка элементарных частиц было бы невозможно. А высокая мощность электромагнитов объясняется большой массой протонов при высокой скорости движения.

С какими проблемами столкнулись ученые?

Одна из главных проблем при создании этой установки заключалась именно в разгоне частиц. Конечно, им можно было придавать ускорение на каждом круге, однако при ускорении их масса становилась выше. При скорости движения, близкой к скорости света (как известно, ничто не может двигаться быстрее скорости света), их масса становилась огромной, из-за чего удерживать их на круговой орбите было сложно. Из школьной программы нам известно, что радиус движения элементов в магнитом поле обратно пропорционален их массе, поэтому с ростом массы протонов приходилось увеличивать радиус и использовать большие сильные магниты. Подобные законы физики сильно ограничивают возможности для исследования. Кстати, ими же можно объяснить, почему синхрофазотрон получился таким огромным. Чем большим будет тоннель, тем большие магниты можно установить для создания сильного магнитного поля для удержания нужного направления движения протонов.

Вторая проблема - потеря энергии при движении. Частицы при прохождении по окружности излучают энергию (теряют ее). Следовательно, при движении на скорости часть энергии улетучивается, и, чем выше скорость движения, тем выше и потери. Рано или поздно наступает момент, когда величины излучаемой и получаемой энергии сравниваются, что делает невозможным дальнейший разгон частиц. Следовательно, возникают потребности в больших мощностях.

Можно сказать, что мы теперь более точно понимаем, что это - синхрофазотрон. Но чего именно добились ученые в ходе испытаний?

Какие исследования проводились?

Естественно, работа этой установки не прошла бесследно. И хотя от нее ожидали получить более серьезные результаты, некоторые исследования оказались крайне полезными. В частности, ученые изучили свойства ускоренных дейтронов, взаимодействий тяжелых ионов с мишенями, разработали более эффективную технологию для утилизации отработанного урана-238. И хотя для обычного человека все эти результаты мало о чем говорят, в научной сфере их значимость сложно переоценить.

Применение результатов

Результаты проводимых на синхрофазотроне испытаний применяются даже сегодня. В частности, они используются при строительства электростанций, работающих на применяются при создании космических ракет, робототехники и сложного оборудования. Безусловно, вклад в науку и технический прогресс этого проекта достаточно большой. Некоторые результаты применяются и в военной сфере. И хотя ученым не удалось открыть новые элементы, которые можно было бы использовать для создания новых атомным бомб, на самом деле никто не знает, правда это или нет. Вполне возможно, что от населения скрывают некоторые результаты, ведь стоит учитывать, что данный проект был реализован под грифом "Совершенно секретно".

Заключение

Теперь вы понимаете, что это - синхрофазотрон, и какова его роль в научно-техническом прогрессе СССР. Даже сегодня подобные установки активно используются во многих странах, вот только есть уже более усовершенствованные варианты - нуклотроны. Большой адронный коллайдер является, пожалуй, самой лучшей на сегодняшний день реализацией идеи синхрофазотрона. Применение этой установки позволяет ученым точнее познавать микромир за счет сталкивания двух пучков протонов, движущихся на огромных скоростях.

Что касается нынешнего состояния советского синхрофазотрона, то он был переделан в ускоритель электронов. Сейчас работает в ФИАНе.

По своей сути синхрофазотрон представляет собой огромную установку для ускорения заряженных частиц. Скорости элементов в этом устройстве очень велики, как и выделяемая при этом энергия. Получая картину взаимного соударения частиц, ученые могут судить о свойствах материального мира и его строении.

О необходимости создания ускорителя говорилось еще до начала Великой Отечественной войны, когда группа советских физиков во главе с академиком А. Иоффе направила в правительство СССР письмо. В нем подчеркивалась важность создания технической базы для изучения строения ядра атома. Эти вопросы уже тогда стали центральной проблемой естествознания, их решение могло продвинуть вперед прикладную науку, военное дело и энергетику.

В 1949 году началось проектирование первой установки – протонного ускорителя. Это сооружение было к 1957 году построено в Дубне. Ускоритель протонов, получивший название «синхрофазотрон», представляет собой сооружение громадных размеров. Он сконструирован в виде отдельного корпуса научно-исследовательского института. Основную часть площади сооружения занимает магнитное кольцо диаметром около 60 м. Оно требуется для создания электромагнитного поля с требуемыми характеристиками. В пространстве магнита и происходит ускорение частиц.

Принцип работы синхрофазотрона

Первый мощный ускоритель-синхрофазотрон изначально предполагалось сконструировать на основе комбинации двух принципов, до этого по отдельности использовавшихся в фазотроне и синхротроне. Первый из принципов – изменение частоты электромагнитного поля, второй – изменение уровня напряженности магнитного поля.

Работает синхрофазотрон по принципу циклического ускорителя. Чтобы нахождение частицы на одной и той же равновесной орбите, частота ускоряющего поля меняется. Пучок частиц всегда приходит в ускорительную часть установки в фазе с электрическим полем высокой частоты. Синхрофазотрон иногда называют протонным синхротроном, имеющим слабую фокусировку. Важный параметр синхрофазотрона – интенсивность пучка, которая определяется числом содержащихся в нем частиц.

В синхрофазотроне почти полностью устраняются погрешности и недостатки, свойственные его предшественнику – циклотрону. Изменяя индукцию магнитного поля и частоту перезарядки частиц, протонный ускоритель увеличивает энергию частиц, направляя их по нужному курсу. Создание такого прибора произвело революцию в ядерной

Синхрофазотрон - циклический ускоритель с постоянной длиной равновесной орбиты. Чтобы частицы в процессе ускорения оставались на той же орбите, изменяется как ведущее магнитное поле , так и частота ускоряющего электрического поля . Большинство современных циклических ускорителей являются сильнофокусирующими синхрофазотронами. Для ультрарелятивистских электронов в процессе ускорения частота обращения практически не меняется, и используются синхротроны.

Из истории

Волею судьбы в 1921 году он оказывается беспризорником в Москве и попадает в дом-коммуну в Хамовниках. Окончив в коммуне школу-девятилетку, стал работать на заводе электриком, где получил комсомольскую путевку в институт. В 1931 году окончил экстерном Московский энергетический институт и стал работать в лаборатории рентгеноструктурного анализа Всесоюзного электротехнического института в Лефортове, где занимался постройкой измерительных приборов и изучением методов измерения потоков заряженных частиц.

В 1937 г. Векслер перешел в Физический институт Академии наук СССР имени П.Н. Лебедева (ФИАН), где занялся изучением космических лучей. С их помощью физики изучали превращения химических элементов и изучали процессы ядерных взаимодействий. Векслер участвовал в экспедициях ученых на Эльбрус, а затем, позже, на Памир, где и отлавливались потоки заряженных частиц высокой энергии, которые невозможно было получить в земных лабораториях.

Уже в двадцатых годах у многих ученых-ядерщиков возникала мысль - как хорошо было бы получить частицы Э.Лоуренс таких высоких “космических” энергий в лаборатории с помощью надежных приборов. Теоретически всё было ясно - заряженную частицу должно разгонять электрическое поле. Однако линейные ускорители не позволяли получить частицы больших энергий. В 1929 году американский ученый Э. Лоуренс предложил конструкцию ускорителя, в котором частица движется по спирали, проходя многократно один и тот же промежуток между двумя электродами. Траекторию частицы искривляет и закручивает однородное магнитное поле, направленное перпендикулярно плоскости орбиты. Ускоритель был назван циклотроном. В 1930-1931 годах Лоуренс с сотрудниками построил в Калифорнийском университете (США) первый циклотрон. За это изобретение он в 1939 году был удостоен Нобелевской премии.

С 1938 г. Векслер подключился к созданию циклоторонов в нашей стране. Но и у них оказался предел ускорения частиц. Требовались новые усовершенствования. Работы прервала война, и Векслер во время эвакуации в Казани совместно с другими учёными занимался исследованиями, непосредственно необходимыми фронту. Только в 1943 году Векслеру удалось вернуться к проблемам ускорителей. Трудность заключалась в том, что в соответствии с теорией относительности Эйнштейна с увеличением скорости росла и масса частиц, они отклонялись от круговой траектории и гасились о стенки циклотрона.

В феврале 1944 года В.И. Векслер выдвинул революционную идею, как преодолеть энергетический барьер циклотрона. Он назвал свой метод автофазировкой. Векслер предложил синхронно увеличивать во времени магнитное поле в циклотроне, питая магнит переменным током в фазе с частотой обращения частиц. Тогда окажется, что в среднем частота обращения частиц по окружности автоматически будет поддерживаться равной частоте разгоняющего электрического поля. Такой ускоритель был назван синхрофазотроном.

Через год независимо от Векслера принцип автофазировки открыл американский ученый Э. Макмиллан. Позднее они оба были представлены к присуждению за это Нобелевской премии. Но у нас все работы были засекречены и не были представлены в Нобелевский комитет. А одному Макмиллану премию не дали. Правда, в 1957 году он получил Нобелевскую премию по химии за другую работу.

В 1949 году по инициативе В. И. Векслера и С. И. Вавилова ученые и инженеры начали проектировать первый в нашей стране синхрофазотрон на 10 миллиардов электрон-вольт в Дубне. Пуск его в эксплуатацию состоялся в 1957 году. Векслер был бессменным директором Лаборатории высоких энергий Объединенного института ядерных исследований в Дубне.

Поделиться: