Ионообменный фильтр умягчения воды. Натрий- и H-катионирование

Умягчение воды — процесс, направленный на удаление из нее катионов кальция и магния, т.е. снижение ее жесткости .

По требованию САНПиН жесткость питьевой воды не должна превышать 7 мг-экв/л, а к воде, участвующей в процессах теплообмена выставляют требования глубокого ее умягчения, т.е. до 0,05…0,01 мг-экв/л. Жесткость воды, используемой для подпитки барабанных котлов ТЭЦ, не должна превышать 0,005 мг-экв/л, или 5 мкг-экв/л.

Снижение совокупной концентрации катионов Mg(II), Ca(II) и анионов, с которыми они при определенных условиях могут образовывать не стенках труб и аппаратов плотные нерастворимые отложения, проходит на системах водоочистки и водоподготовки различными методами, чей выбор определяется качеством исходной воды, требованию к ее очистке и технико-экономическими соображениями.

Метод ионного обмена.

В основе данного метода лежит способность некоторых материалов (катионитов и анионитов) поглощать из воды ионы (катионы и анионы) в обмен на эквивалентное количество ионов (катионов и анионов).

Процесс катионирования — тот процесс, при котором происходит обмен катионами. В водоподготовке при умягчении — катионами катионита на ионы Ca 2+ и Mg 2+ из воды.

Процесс анионирования — соответственно анионами, в основном при обессоливании и глубоком обессоливании.

Магнитная обработка воды.

Использование магнитной обработки воды целесообразно в случае высокой кальциево-карбонатной жесткости.

В процессе прохождения воды сквозь магнитное поле в ней образуются центры кристаллизации, которые укрупняются и выпадают в неприкипающий шлам, удаляемый при продувке. Т.е. выделение осадка идет не на стенках поверхности нагрева, а в объеме воды.

Влияние на противонакипный эффект оказывают такие факторы, как качественный и количественный состав воды, скорость движения жидкости сквозь магнитные силовые линии, напряженность магнитного поля и время пребывания в нем воды.

Условиями для осуществления успешной магнитной обработки воды должно являться высокое содержание карбоната и сульфата кальция, а концентрация свободного оксида углерода IV должна быть меньше равновесной. Так же увеличивают противонакипный эффект содержащиеся в воде примеси оксидов железа и прочих.

Аппараты магнитной обработки воды работают как на основе постоянных магнитов, так и на основе электромагнитов. Недостатком аппаратов с постоянными магнитами является то, что время от времени их приходится чистить от ферромагнитных примесей. Электромагниты чистят от оксидов железа, отключив их от сети.

Скорость воды в магнитном поле при ее обработке не должна превышать 1м/с. Для увеличения объема обрабатываемой воды на единицу времени применяют аппараты с послойной магнитной обработкой.

Метод магнитной обработки нашел применение на тепловых сетях горячего водоснабжения, на ТЭЦ, в теплообменных аппаратах.

Выбор данного метода при решении задачи умягчения воды должен главным образом основываться на его эффективности при очистке воды данного качества – использоваться как основной, последующей ступени или в качестве дополнительного.

Обратный осмос.

В данное время наиболее широкое распространение в водоподготовке получил метод обратного осмоса.

Суть метода состоит в том, что под высоким давлением, — от 10 до 25 атмосфер, — вода подается на мембраны. Мембраны, являясь селективным материалом по отношению к проходящим сквозь нее примесям, пропускают молекулы воды и не пропускают растворенные в воде ионы.

Таким образом, на выходе после установки обратного осмоса мы получаем два потока — первый поток чистой воды, прошедшей сквозь мембрану, так называемый пермеат, и второй поток — воды с примесями, не прошедшей сквозь мембрану, называемый концентратом.

Пермеат направляется потребителю и составляет от 50 до 80 % от объема подаваемой воды. Его количество зависит от свойств мембраны и ее состояния, качества исходной воды и желаемого результата очистки. Чаще всего это около 70%.

Концентрат, соответственно, от 50 до 20%.

При увеличении нагрузки на мембрану, т.е. увеличения процентного соотношения между пропускаемой водой и водой с примесями, селективность мембраны снижается и достигает минимума при отсутствии концентрата, т.е. тогда, когда вся вода, подающаяся на установку обратного осмоса, проходит сквозь мембрану.

Мембраны обратного осмоса изготовляются из композитного полимерного материала особой структуры, позволяющего при высоких давлениях пропускать воду и не пропускать растворенные в ней ионы и прочие примеси. При увеличении нагрузки на мембрану срок ее службы сокращается, а при достижении критических параметров, при которых попускаемая жидкость с примесями проходит сквозь мембрану полностью, она разрушается. Средний срок службы мембраны — 5 лет.

Поверхность мембран со временем может обрастать микроорганизмами, покрываться слоем труднорастворимых соединений. Для чистки обратноосмотических мембран применяют растворы кислот и щелочей с добавлением биоцидов.

При промывки обратного осмоса нельзя забывать, что полупроницаемая мембрана — это не фильтр. Промывка должна проводиться исключительно по ходу движения жидкости. Обратный ток раствора воды приведет к выходу мембраны из строя.

Реагентные методы обработки воды.

Реагентные методы обработки воды служат в основном для неглубокого умягчения воды путем добавления реагентов и перевода солей жесткости в малорастворимые соединения с последующим их осаждением.

В качестве реагентов используется известь, сода, едкий натр и пр. В настоящий момент мало где применяются, но для общего понимания процессов перевода в малорастворимые соединения кальция и магния и дальнейшее их осаждение, рассмотрим их.

Снижение накипи известкованием.

Метод применим к воде с высокой карбонатной и малой некарбонатной жесткостью.

При добавлении известкового молока pH воды повышается, что приводит к переходу растворенного диоксида углерода и гидрокарбонатного иона в карбонатный ион:
СО 2 + ОН - = СО 3 2- + Н 2 О,
НСО 3- + ОН - = СО 3 2- + Н 2 О.

При насыщении воды карбонатными ионами кальций выпадает в осадок:
Са 2+ + СО 3 2- = СаСО 3 ↓.

Также с увеличением рН в осадок выпадает и магний:
Мg 2+ + OH - = Mg(OH) 2 ↓.

В случае, если превышение карбонатной жесткости незначительно, то вместе с известью дозируют соду, чье присутствие снижает некарбонатную жесткость:

CaSO 4 + Na 2 CO 3 = CaCO 3 ↓ + Na 2 SO 4 .

Для более полного осаждения катионов магния и кальция рекомендуется подогревать воду до температуры 30 - 40 градусов. С ее повышением растворимость CaCO 3 и Mg(OH) 2 падает. Это дает возможность снижать жесткость воды 1 мг-экв/л и менее.

Содово-натриевый метод умягчения воды.

Добавление соды необходимо в том случае, если некарбонатная жесткость больше чем карбонатная. При равенстве этих параметров добавление соды может и не понадобиться совсем.

Гидрокарбонаты кальция и магния в реакции со щелочью образуют малорастворимые соединения кальция и магния, соду, воду и углекислый газ:
Ca(HCO 3) 2 + 2NaOH = CaCO 3 ↓ + Na 2 CO 3 + 2H 2 O,
Mg(HCO 3) 2 + 2NaOH = Mg(OH) 2 ↓ + Na 2 CO 3 + H 2 O + CO 2 .

Образовавшийся в результате реакции гидрокарбоната магния с щелочью углекислый газ снова реагирует с щелочью с образованием соды и воды:
CO 2 + NaOH = Na 2 CO 3 + H 2 O.

Некарбонатная жесткость.
Сульфат и хлорид кальция реагирует с образовавшейся в реакциях карбонатной жесткости и щелочи содой и добавленной содой с образованием неприкипающего в щелочных условиях карбоната кальция:
CaCl 2 + Na 2 CO 3 = CaCO 3 ↓ + 2NaCl,
CaSO 4 + Na 2 CO 3 = CaCO 3 ↓ + Na 2 SO 4

Сульфат и хлорид магния реагируют со щелочью, образуя выпадающий в осадок гидроксид магния:
MgSO 4 + 2NaOH = Mg(OH) 2 ↓ + Na 2 SO 4 ,
MgCl 2 + 2NaOH = Mg(OH) 2 ↓ + 2NaCl .

Ввиду того, что в реакциях гидрокарбоната с щелочью образуется сода, которая в дальнейшем реагирует с некарбонатной жесткостью, ее количество необходимо коррелировать в соотношении карбонатной и некарбонатной жесткости: при их равенстве соду можно не добавлять, при условии Ж к > Ж нк образуется избыток соды, при обратном соотношении Ж к

Комбинированные методы.

Сочетание различных методов обработки воды с целью снижения ее жесткости дает в иной раз довольно высокую результативность. Обусловлено это, как правило, высокими требованиями к качеству воды и пара.

Примером может быть сочетание обратного осмоса с натрий-катионированием . Основная жесткость воды снижается на фильтрах-катионитах, на обратном осмосе идет ее обессоливание.

В другом случаем в качестве дополнительной ступени очистки может служить магнитная обработка воды – установку располагают после системы умягчения на трубопроводе циркуляции горячего водоснабжения.

Некоторые фильтрующие материалы (иониты ) способны поглощать из воды положительные ионы (катионы) в обмен на эквивалентное количество ионов катионита.

Умягчение воды катионированием основано на явлении ионного обмена (ионообменные технологии), сущность которого состоит в способности ионообменных фильтрующих материалов (иониты – катиониты) поглощать из воды положительные ионы в обмен на эквивалентное количество ионов катионита.

Основной рабочий параметр катионита – обменная ёмкость ионита, которая определяется количеством катионов, которые катионит может обменять в течение фильтроцикла. Обменная ёмкость измеряется в грамм-эквивалентах задержанных катионов на 1м 3 катионита, находящегося в набухшем (рабочем) состоянии после пребывания в воде, т.е. в таком состоянии, в котором катионит находится в фильтрате.

Бывает полная и рабочая (динамическая) обменная емкость катионита. Полная обменная ёмкость катионита – то количество катионов кальция Са +2 и магния Мg +2 , которое может задержать 1 м 3 катионита, находящегося в рабочем состоянии, до того момента, когда жесткость фильтрата сравнивается с жесткостью исходной воды. Рабочая обменная емкость катионита – то количество катионов Са +2 и Мg +2 , которое задерживает 1м 3 катионита до момента «проскока» в фильтрат катионов солей жесткости.

Обменная ёмкость, отнесенная ко всему объему катионита, загруженного в фильтр, называют емкостью поглощения фильтра умягчения воды.

В умягчителе очищаемая вода проходит через слой катионита сверху вниз. При этом на определённой глубине фильтрующего слоя происходит максимальное умягчение воды ( от солей жёсткости). Слой катионита, который участвует в умягчении воды , называется зоной умягчения (рабочий слой катионита). При дальнейшем умягчении воды верхние слои катионита истощаются и теряют ионообменную способность. В ионный обмен вступают нижние слои катионита и зона умягчения постепенно опускается. Через некоторое время наблюдаются три зоны: работающего, истощенного и свежего катионита. Жесткость фильтрата будет постоянной до момента совмещения нижней границы зоны умягчения с нижним слоем катионита. В момент совмещения начинается «проскок» катионов Са +2 и Мg +2 и увеличение остаточной жесткости, пока она не станет равной жесткости исходной воды, что свидетельствует о полном истощении катионита.

Рабочие параметры системы смягчения воды () определяются по формулам:

Е p = QЖ и (г-экв/м 3)
Е p = е p V к,
V к = аh к
е p = QЖ и / аh к
Q = v к aT к = е p аh к / Ж и
T к = е p h к /v к Ж и.

где:
е p – рабочая ёмкость катионита, м-экв/м 3
V к – объём загруженного в умягчитель катионита в набухшем состоянии, м 3
h к – высота слоя катионита, м
Ж и – жесткость исходной воды, г-экв/ м 3
Q – количество умягченной воды, м 3
а – площадь поперечного сечения фильтра-умягчителя воды, м 2
v к – скорость фильтрования воды в катионитовом фильтре
T к – длительность работы установки умягчения воды (межрегенерационный период)

Материалы ВИОН применяются для очистки вентиляционных отходящих газовых выбросов промышленности от растворимых компонентов, аэрозолей кислот и солей тяжелых металлов, где их используют главным образом в виде нетканых иглопробивных полотен.

Ход работы:

Взвесить 2 гр. катионита ВИОН КН-1 (сухого). Насыпать в бюретку. Пропускать через колонку заполненным катионитом исходный раствор CuCl 2 (3,6 ммоль/л). Далее отдираем пробы по 50 мл титрованием. На основе методики (пункт 3.1) определяем оптическую плотность пробы и находим концентрацию меди. Результаты представлены в таблице 3.5.

Таблица 3.5

С, ммоль/л

Построили график зависимости концентрации меди в фильтрате от объема прошедшего через ионит раствора.

Рис. 3.4

Процесс сорбции заключается в полном поглощении первых порций катионов катионитом, причем область поглощения постепенно перемещается по колонке к выходу. После этого наступает момент, когда, в силу исчерпания емкости катионита, катионы начинают выходить из колонны. Из графика видно, что концентрация меди на выходе из колонки увеличивается постепенно и имеет вид S-образной кривой, начиная от нулевых концентраций до максимальной. Эта кривая растягивается при маленьких концентрациях солей.

Рассчитали количество меди, поглотившегося колонкой до полного насыщения катионита, как площадь фигуры, ограниченной S-образной кривой и прямой максимальной концентрации:

н = ?Vi*(Cmax - Ci) (3)

где Vi = 50 мл,

Cmax = 3,6ммоль

н1 = 2,20 ммоль.

Рассчитали объемную емкость катионита:

з1 = н1/m к = 2,20/2 = 1,10 ммоль/гр. катионита.

Обсуждение результатов

В ходе экспериментальных работ определили полную обменную емкость трех различных катионитов (КУ-2-8, КУ-1, ВИОН КН-1). Результаты представлены на рисунке 3.5.


Полная обменная емкость катионита пропорциональна площади фигуры, ограниченной S-образной кривой и прямой максимальной концентрации. Как видно из рисунка 3.5. Емкости различных ионитов различны и меньше полной обменной емкости катионитов заявленных в паспорте. Так полная обменная емкость катионита КУ-2-8 найдена эксперементальным путем ниже паспортного значения на 28%, полная обменная емкость КУ-1 ниже паспортного значения на 57%, а ПОЕ катионита ВИОН КН-1 ниже на 39%. Эти данные необходимо учитывать при расчете и конструировании ионообменных аппаратов и фильтров.

Рис.Сравнение полной динамической ПДОЕ и динамической обменной емкости ДОЕ. Заштрихованная площадь А соответствует ДОЕ, а вся площадь над кривой с учетом проскока солей - ПДОЕ

Селективность

Под селективностью понимают способность избирательно сорбировать ионы из растворов сложного состава. Селективность определяется типом ионогенных групп, числом поперечных связей матрицы ионита, размером пор и составом раствора. Для большинства ионитов селективность невелика, однако разработаны специальные образцы, имеющие высокую способность к извлечению определенных ионов.

Механическая прочность

Показывает способность ионита противостоять механическим воздействиям. Иониты проверяются на истираемость в специальных мельницах или по весу груза, разрушающего определенное число частиц. Все полимеризационные иониты имеют высокую прочность. У поликонденсационных она существенно ниже. Увеличение степени сшивки полимера повышает его прочность, но ухудшает скорость ионного обмена.

Осмотическая стабильность.

Наибольшее разрушение частиц ионитов происходит при изменении характеристик среды, в которой они находятся. Поскольку все иониты представляют собой структурированные гели, их объем зависит от солесодержания, рН среды и ионной формы ионита. При изменении этих характеристик объем зерна изменяется. Вследствие осмотического эффекта объем зерна в концентрированных растворах меньше, чем в разбавленных. Однако это изменение происходит не одновременно, а по мере выравнивания концентраций «нового» раствора по объему зерна. Поэтому внешний слой сжимается или расширяется быстрее, чем ядро частицы; возникают большие внутренние напряжения и происходит откалывание верхнего слоя или раскалывание всего зерна. Это явление называется «осмотический шок». Каждый ионит способен выдерживать определенное число циклов таких изменений характеристик среды. Это называется его осмотической прочностью или стабильностью.

Наибольшее изменение объема происходит у слабокислотных катионитов. Наличие в структуре зерен ионита макропор увеличивает его рабочую поверхность, ускоряет перенабухание и дает возможность «дышать» отдельным слоям. Поэтому наиболее осмотически стабильны сильнокислотные катиониты макропористой структуры, а наименее - слабокислотные катиониты.

Осмотическая стабильность определяется как количество целых зерен, отнесенное к общему первоначальному их числу, после многократной (150 раз) обработки навески ионита попеременно в растворе кислоты и щелочи с промежуточной отмывкой обессоленной водой.

Химическая стабильность

Все иониты обладают определенной стойкостью к растворам кислот, щелочей и окислителей. Все полимеризационные иониты имеют большую химическую стойкость, чем поликонденсационные. Катиониты более стойки, чем аниониты. Среди анионитов слабоосновные устойчивее к действию кислот, щелочей и окислителей, чем сильноосновные.

Температурная устойчивость

Температурная устойчивость катионитов выше, чем анионитов. Слабокислотные катиониты работоспособны при температуре до 130 ° С, сильнокислотные типа КУ-2-8 - до 100-120 ° С, а большинство анионитов - не выше 60, максимум 80 ° С. При этом, как правило, Н- или ОН-формы ионитов менее стойки, чем солевые.

Введение

Полная обменная емкость анионита определяется при его нейтрализации раствором HCl или H 2 SO 4 в статических или динамических условиях и выражается в эквивалентах на 1г сухого или набухшего анионита.

Реакции обмена анионов / А-анионит/ имеют вид:

А. /OH/ +H /Cl = A.OH.Cl +H O;

A. /OH/ + H /SO = A.SO +2 H O .

Помимо обменной емкости к основным показателям пригодности анионита относят: обесцвечивающую способность, степень набухания, способность к старению, нерастворимость в воде и органических растворителях, простоту регенерации, термическую и механическую прочность.

Полная обменная емкость различных марок анионитов, используемых в сахарной промышленности, может быть 1 - 10 мг-экв/г. Применяемый для обесцвечивания сахарных растворов отечественный макропористый анионит АВ-17-2П имеет полную обменную емкость по 0,1 н. раствору HCl 3,8 мг-экв/г, а по 0,1 н. раствору NaCl 3,4 мг-экв/г.

Цель анализа - оценить качество анионита для обесцвечивания сахарных растворов.

Принцип метода анализа основан на титровании непоглощенного анионитом раствора кислоты 0,1 н. раствором NaOH.

Реактивы :

0,1 н. растворы HCl и NaOH.

Приборы и материалы:

Стеклянная колонка диаметром 18 мм, высотой 250 мм с оттянутым в нижней части концом, на который надевают резиновую трубку с винтовым зажимом;

Стеклянная воронка;

Мерная колба на 500 см 3 ;

Бюретка для титрования;

Химический стакан;

Анионообменная смола.

Ход определения

10г приготовленного для анализа анионита в ОН - форме переводят водой в стеклянную колонку диаметром 18 мм с тампоном из стеклянной ваты на дне, а избыток воды спускают через резиновую трубку с винтовым зажимом.

После этого через слой анионита в течение 30 мин равномерно пропускают 400 см 3 0,1 н. раствора HCl, поддерживая уровень раствора над слоем анионита равным 1 см. Затем его промывают двойным по объему анионита количеством воды. Фильтрат и промывные воды собирают в мерную колбу и доводят их объем до 500 см 3 . Отбирают из общего объема в стакан 50 см 3 и титруют 0,1 н. раствором NaOH.



Расчеты:

1. Для получения сравнимых результатов обменную емкость анионита выражают также, как и катионита через мг-экв/г сухого ионита.

Поэтому, если 1 г абсолютно сухого анионита поглотит

см 3 0,1 н. раствора HCl, а 1 см 3 этого раствора содержит 0,1 мг-экв/г, то полная обменная емкость анионита Е А может быть рассчитана из формулы

,

где E А - полная обменная емкость анионита, мг-экв/г абсолютно сухого ионита;

a - количество фильтрата, собранное для титрования, см 3 ;

V О – количество 0,1 н. раствора HCl, пропущенного через анионит, см 3 ;

V b - общее количество фильтрата, см 3 ;

g - количество сухого анионита, взятого для определения его емкости, г;

W – влажность анионита, %. Определяют методом высушивания в течение 3-х часов при 95-100˚С.

2. Емкость анионита может быть выражена и в процентах по HCl. В этом случае учитывают то, что 1 см 3 0,1 н. раствора HCl содержит 0,0036 г HCl, расчет E ведут по формуле

6.3. Регенерация ионообменных смол

Введение

Отработанные в рабочем цикле ионообменные смолы после их промывки водой подвергают регенерации (восстановлению).

Катиониты восстанавливают слабыми растворами HCl и H SO

K.Na + H /SO = K.H+ Na /SO ;

KNa + HCl = KH + NaCl.

Для восстановления анионитов применяются слабые растворы NaOH, KOH, NaCl и др.

A.OH.Cl + Na /OH = A./OH/ + Na /Cl .

В конце цикла регенерации кислотность регенерата из катионообменника или щелочность регенерата из анионообменника должны приближаться к кислотности и щелочности регенерационных растворов. Окончание регенерации устанавливают путем титрования.

Цель анализа - восстановить обменную емкость ионитов.

Принцип метода анализа основан на титровании регенерационных растворов из катионообменника 0,1 н. раствора NaOH, а из анионообменника - 0,1 н. раствором HCl.

Реактивы:

5%-ный раствор HCl;

4%-ный раствор NaOH;

0,1 н. раствор NaOH;

0,1 н. раствор HCl.

Приборы и материалы:

Стеклянные колонки с катионообменной смолой и анионообменной смолой.

Ход определения

После промывания смолы водой в колонках проводят регенерацию: катионита – 5%-ным раствором HCl, а анионита - 4%-ным раствором NaOH, пропуская их со скоростью 20 см 3 /мин.

Окончание регенерации катионита устанавливают титрованием его регенерационных растворов 0,1 н. раствором NaOH , а анионообменника – 0,1 н. раствором HCl.

После регенерации катионит отмывают водой до нейтральной или слабокислой реакции, а анионит – до нейтральной или слабощелочной реакции.

Контрольные вопросы

1. Что представляет собой ионный обмен?

2. Что такое ионообменные смолы?

3. Какие ионообменные смолы применяют в сахарном производстве?

4. Расскажите о статической и динамической обменной емкости ионитов?

5. Что определяет полная обменная емкость ионитов?

6. В каких единицах выражается полная обменная емкость?

7. С какой целью используют иониты в сахарном производстве?

8. На каком принципе основано определение полной обменной емкости ионитов?

9. Для чего проводят регенерацию ионообменных смол?

10. На каком принципе основано выполнение регенерации ионитов?

11. Как определяют окончание процесса регенерации ионитов?

Лабораторная работа № 7

Анализ сточных вод сахарного производства

Введение

В пищевой промышленности наибольшее количество воды потребляется сахарными заводами. Если для нужд свеклосахарного завода использовать только чистую воду из естественных водоемов, не возвращая части отработавшей воды в производство, то общий расход промышленной (свежей) воды составит 1200-1500% к массе свеклы. Сократить расход свежей воды до 150-250% к массе свеклы можно при условии использования на многих участках сахарного завода отработавшую воду по схеме оборотного водоснабжения. Артезианская вода расходуется только на промывание сахара-песка в центрифугах, для раскачки утфеля Ι кристаллизации и нужд заводской лаборатории.

Сточные (отработавшие) воды сахарных заводов разнообразны по своему физико-химическому составу, степени загрязнения и способу требуемой очистки. По степени загрязнения их классифицируют на три категории. Каждую категорию подразделяют на две подгруппы: А и Б, из которых вода подгруппы А по качеству лучше подгруппы Б.

Сточные воды сахарного производства содержат большое количество органических веществ, и их очистка в естественных условиях связана с определенными трудностями, требует значительных земляных площадей и может оказывать отрицательное влияние на окружающую среду. В последние годы разработан ряд способов биологической очистки и соответствующее оборудование для их реализации. Предлагаемые в настоящее время способы очистки в основном базируются на анаэробных и аэробных процессах разложения примесей сточных вод сахарных и крахмалопаточных заводов.

Современная технология очистки сточных вод заключается в последовательном отделении содержащихся в них примесей механическим, анаэробным и аэробным способами. При этом анаэробный способ является новым процессом в технологии очистки сточных вод. Анаэробный процесс очистки требует для его проведения выдерживания температур в интервале 36-38 0 С, что связано с дополнительным расходом тепла. Его отличие от широко распространенного аэробного способа состоит прежде всего в минимальном приросте биоосадка и превращении углеводсодержащих примесей в биогаз, основным компонентом которого является метан.

Аэробный процесс

С 6 Н 12 О 6 + О 2 ---- СО 2 + Н 2 О + Биоосадок + Тепло (6360 кДж).

Анаэробный процесс

С 6 Н 12 О 6 ---- СН 4 + СО 2 + Биоосадок + Тепло (0,38 кДж).

Анаэробные способы подразделяют на четыре основные группы по типу используемых в процессах очистки реакторов:

С рециркуляцией биоосадка (активного ила):

Со слоем анаэробного осадка и внутренним его осаждением;

С инертными наполнителями для биоосадка;

Специальные.

Сточные воды, подвергаемые анаэробной очистке, должны содержать как можно меньше механических примесей и веществ, ингибирующих метаногенный процесс. В них должна пройти гидролизно-кислотная фаза и кроме этого сточные воды должны иметь определенную величину рН и температуру в диапазоне 36-38 0 С.

Считается, что анаэробный способ очистки экономически выгоден для сточных вод с загрязнением более 1,2-2,0 г/дм 3 БПК 5 (биологическое потребление кислорода). Верхний предел загрязнения при этом не ограничен. Он может равняться и 100 г/дм 3 ХПК (химическое потребление кислорода).

К ним относят:

А) Избыточную свежую воду из напорного резервуара, от охлаждения утфеля в утфелемешалках, от насосов и других установок с температурой ниже 30°С. Для возврата в производство эти воды не требуют очистки;

Б) Барометрическую, аммиачную и другие с температурой выше 30°С. Для возврата этих вод требуется предварительное охлаждение и аэрация.

К сточным водам II категории относят транспортерно-моечную воду из гидравлических транспортеров и свекломоек. Для повторного использования этих вод в производстве требуется их предварительная механическая очистка путем отстаивания в специальных отстойниках.

К сточным водам III категории относят: жомопрессовую воду, ее отстой, лаверные воды, осадок транспортерно-моечной воды, жидкий фильтрационный осадок, хозяйственно-бытовые, фекальные и другие вредные воды. Для очистки вод III категории требуются биологические и комбинированные способы очистки в соответствующих отстойниках и на полях фильтрации.

На действующих сахарных заводах за основу принимают следующие основные показатели баланса воды (% к массе свеклы): забор свежей воды из водоема – 164; количество оборотных вод I категории – 898; II категории –862; сточных вод III категории – 170 или 110 при условии отстаивания суспензии транспортерно-моечного осадка в вертикальных отстойниках-сгустителях Ш1-ПОС-3 и возврате декантата в контур рециркуляции вод II категории.

Для вновь строящихся свеклосахарных заводов потребление свежей воды на производственные нужды не должно превышать 80% к массе свеклы, а количество сбрасываемых очищенных производственных сточных вод в природные водоемы – не более 75% к массе свеклы.

При анализе качества промышленных и сточных вод определяют их температуру, цвет, запах, прозрачность, характеристику осадка, содержание взвешенных веществ, сухой остаток, рН, общую щелочность (кислотность), окисляемость, биохимическое потребление кислорода (БПК), химическое потребление кислорода (ХПК), концентрацию аммиака, нитратов, хлоридов и другие показатели.

Цель работы - освоить методы контроля качества промышленной (свежей) и сточных вод.

Поделиться: