Защита электродвигателя: основные виды, схемы подключения и принцип работы. Инструкция как установить своими руками

Наверно все знают, что различные устройства работают на основе электрических двигателей. Но для чего нужна защита электродвигателей осознает лишь малая часть пользователей. Оказывается они могут сломаться в результате различных непредвиденных ситуаций.

Чтобы избежать проблем с высокими затратами на ремонт, неприятных простоев и дополнительных материальных потерь используются качественные защитные устройства. Далее разберемся в их устройстве и возможностях.

Как создается защита для электродвигателя?

Постепенно рассмотрим основные устройства защиты электродвигателей и особенности их эксплуатации. Но сейчас расскажем об трех уровнях защиты:

  • Внешняя версия защиты для предохранения от короткого замыкания. Обычно относится к разным видам либо представлена в виде реле. Они обладают официальным статусом и обязательны к установке согласно нормам безопасности на территории РФ.
  • Внешняя версия защиты электродвигателей от перегрузки помогает предотвратить опасные повреждения либо критические сбои в процессе работы.
  • Встроенный тип защиты спасет в случае заметного перегрева. И это защитит от критических повреждений либо сбоев в процессе эксплуатации. В этом случае обязательны выключатели внешнего типа иногда применяется реле для перезагрузки.


Из-за чего отказывает электродвигатель?

В процессе эксплуатации иногда появляются непредвиденные ситуации, останавливающие работу двигателя. Из-за этого рекомендуется заранее обеспечить надежную защиту электродвигателя.

Можете ознакомиться с фото защиты электродвигателя различного типа чтобы иметь представление о том, как она выглядит.

Рассмотрим случаи отказа электродвигателей в которых с помощью защиты можно избежать серьезных повреждений:

  • Недостаточный уровень электрического снабжения;
  • Высокий уровень подачи напряжения;
  • Быстрое изменение частоты подачи тока;
  • Неправильный монтаж электродвигателя либо хранения его основных элементов;
  • Увеличение температуры и превышение допустимого значения;
  • Недостаточная подача охлаждения;
  • Повышенный уровень температуры окружающей среды;
  • Пониженный уровень атмосферного давления, если эксплуатация двигателя происходит на увеличенной высоте на основе уровня моря;
  • Увеличенная температура рабочей жидкости;
  • Недопустимая вязкость рабочей жидкости;
  • Двигатель часто выключается и включается;
  • Блокирование работы ротора;
  • Неожиданный обрыв фазы.

Чтобы защита электродвигателей от перегрузки справилась с перечисленными проблемами и смогла защитить основные элементы устройства необходимо использовать вариант на основе автоматического отключения.

Часто для этого используется плавкая версия предохранителя, поскольку она отличается простотой и способна выполнить много функций:

Версия на основе плавкого предохранительного выключателя представлена аварийным выключателем и плавким предохранителем, соединенных на основе общего корпуса. Выключатель позволяет размыкать либо замыкать сеть с помощью механического способа, а плавкий предохранитель создает качественную защиту электродвигателя на основе воздействия электрического тока. Однако выключателем пользуются в основном для процесса сервисного обслуживания, когда необходимо остановить передачу тока.

Плавкие версии предохранителей на основе быстрого срабатывания считаются отличными защитниками от коротких замыканий. Но непродолжительные перегрузки могут привести к поломке предохранителей этого вида. Из-за этого рекомендуется использовать их на основе воздействия незначительного переходного напряжения.

Плавкие предохранители на основе задержки срабатывания способны защитить от перегрузки либо различных коротких замыканий. Обычно они способны выдержать 5-краткое увеличение напряжения в течение 10-15 секунд.

Важно: Автоматические версии выключателей отличаются по уровню тока для срабатывания. Из-за этого лучше использовать выключатель способный выдержать максимальный ток в процессе короткого замыкания, появляющегося на основе данной системы.

Тепловое реле

В различных устройствах используется тепловое реле для защиты двигателя от перегрузок под воздействием тока либо перегрева рабочих элементов. Оно создается с помощью металлических пластин, обладающих различным коэффициентом расширения под воздействием тепла. Обычно его предлагают в связке с магнитными пускателями и автоматической защитой.

Автоматическая защита двигателя

Автоматы для защиты электродвигателей помогают обезопасить обмотку от появления короткого замыкания, защищают от нагрузки либо обрыва любой из фаз. Их всегда используют в качестве первого звена защиты в сети питания мотора. Потом используется магнитный пускатель, если необходимо он дополняется тепловым реле.

Каковы критерии выбора, подходящего автомата:

  • Необходимо учитывать величину рабочего тока электродвигателя;
  • Количество, использующихся обмоток;
  • Возможность автомата справляться с током в результате короткого замыкания. Обычные версии работают на уровне до 6 кА, а лучшие до 50 кА. Стоит учитывать и скорость срабатывания у селективных менее 1 секунды, нормальных меньше 0,1 секунды, быстродействующих около 0,005 секунды;
  • Размеры, поскольку большая часть автоматов можно подключать с помощью шины на основе фиксированного типа;
  • Вид расцепления цепи – обычно применяется тепловой либо электромагнитный способ.


Универсальные блоки защиты

Различные универсальные блоки защиты электродвигателей помогают уберечь двигатель с помощью отключения от напряжения либо блокированием возможности запуска.

Они срабатывают в таких случаях:

  • Проблемы с напряжением, характеризующиеся скачками в сети, обрывами фаз, нарушением чередования либо слипания фаз, перекосом фазного или линейного напряжения;
  • Механической перегруженности;
  • Отсутствие крутящего момента для вала ЭД;
  • Опасных эксплуатационной характеристике изоляции корпуса;
  • Если произошло замыкание на землю.

Хотя защита от понижения напряжения, может быть, организована и другими способами мы рассмотрели основные из них. Теперь у вас есть представление о том зачем необходимо защищать электродвигатель, и как это осуществляется с помощью различных способов.

Фото защиты электродвигателя

Защита электродвигателя от перегрузки на сегодняшний день является одной из основных задач, которую нужно решить, чтобы успешно эксплуатировать это устройство. Такие типы двигателей используются достаточно широко, а потому было изобретено и множество способов оградить их от различных негативных эффектов.

Уровни защиты

Существует большое разнообразие устройств для защиты данного оборудования, однако, все их можно разделить на уровни.

  • Внешний уровень защиты от короткого замыкания. Чаще всего здесь используется различного типа реле. Данные приборы и уровень защиты находятся на официальном уровне. Другими словами, это обязательный предмет защиты, который должен быть установлен, согласно правилам безопасности на территории РФ.
  • Реле защиты электродвигателя от перегрузок поможет избежать разнообразных критических повреждений в процессе работы, а также возможных повреждений. Эти приборы также принадлежат к внешнему уровню защиты.
  • Внутренний слой защиты предотвращает возможный перегрев деталей двигателя. Для этого иногда используются внешние выключатели, а иногда реле перегрузки.

Причины сбоев оборудования

На сегодняшний день существует большое разнообразие проблем, из-за которых может быть нарушена работоспособность электрического двигателя, если он не будет оборудован приборами для защиты.

  1. Низкий уровень электрического напряжения или же, наоборот, слишком высокий уровень подачи могут стать причиной выхода из строя.
  2. Возможна поломка вследствие того, что слишком быстро и часто будет изменяться частота подачи тока.
  3. Неверная установка агрегата или же его элементов также может быть опасна.
  4. Повышение температуры до критического значения или выше.
  5. Слишком слабое охлаждение тоже приводит к поломкам.
  6. Сильно негативно сказывается повышенная температура окружающей среды.
  7. Немногие знают, то пониженное давление или же установка двигателя намного выше уровня моря, что вызывает пониженное давление, также имеют негативное влияние.
  8. Естественно, что необходима защита электродвигателя от перегрузок, которые могут возникать, из-за сбоев в электросети.
  9. Частое включение и выключение прибора - это негативный дефект, который также нуждается в устранении при помощи приборов защиты.

Плавкие предохранители

Полное название средства защиты - плавкий предохранительный выключатель. В данном устройстве объединяется и автоматический выключатель и плавкий предохранитель, которые расположены в одном корпусе. При помощи выключателя можно также размыкать или замыкать цепь вручную. Плавкий же предохранитель - это защита электродвигателя от перегрузки по току.

Стоит отметить, что конструкция аварийного выключателя предусматривает наличие специального кожуха, который защищает персонал от случайного контакта с клеммами устройства, а также сами контакты от окисления.

Что касается плавкого предохранителя, то это приспособление должно быть способно отличать перегрузку по току от возникновения в цепи короткого замыкания. Это очень важно, так как кратковременная перегрузка по току вполне допускается. Однако, токовая защита электродвигателя от перегрузки должна сработать немедленно, если этот параметр будет продолжать расти.

Предохранители от КЗ

Существует разновидность плавкого предохранителя, которая предназначена для защиты агрегата от короткого замыкания (КЗ). Однако, здесь стоит отметить, что плавкий предохранитель быстрого срабатывания может выйти из строя, если при запуске аппарата будет происходить кратковременная перегрузка, то есть увеличение пускового тока. По этой причине такие приборы обычно используются в тех сетях, где такой скачок невозможен. Что касается самого средства защиты электродвигателя от перегрузки, то предохранитель быстрого срабатывания может выдержать ток, который будет превышать его номинальный на 500%, если перепад длится не более четверти секунды.

Предохранители с задержкой

Развитие технологий привело к тому, что удалось создать прибор для защиты и от перегрузки, и от короткого замыкания одновременно. Таким средством стал плавкий предохранитель с задержкой срабатывания. Особенность заключается в том, что он способен выдерживать 5-кратное увеличение тока, если оно длится не более 10 секунд. Возможно даже более сильное увеличение параметра, но на более короткий срок, прежде чем предохранитель сработает. Однако, чаще всего интервала в 10 секунд хватает и для запуска двигателя, и для того, чтобы предохранитель не сработал. Защита от перегрузок, от КЗ, а также другого типа электродвигателя таким прибором считается одной из наиболее надежных.

Здесь также стоит отметить, как определяется время срабатывания этого устройства защиты. Время срабатывания именно плавкого предохранителя - это отрезок, за который плавится его плавкий элемент (проволока). Когда проволока полностью расплавляется, цепь размыкается. Если говорить о зависимости времени отключения от перегрузки именно для таких типов средств защиты, то они обратно пропорциональны. Другими словами, токовая защита электродвигателя от перегрузок работает так - чем выше сила тока, тем быстрее плавится проволока, а значит сокращается время разъединения цепи.

Магнитные и тепловые приборы

На сегодняшний день автоматические приборы теплового типа считаются наиболее надежными и экономичными приборами для защиты электродвигателя от тепловых перегрузок. Эти устройства также способны выдерживать большие амплитуды тока, которые могут возникнуть во время пуска прибора. Кроме того, тепловые предохранители защищают от таких неполадок как блокировка ротора, к примеру.

Защита асинхронных электродвигателей от перегрузки может осуществляться при помощи магнитных выключателей автоматического типа. Они отличаются высокой надежностью, точностью и экономичностью. Его особенность заключается в том, что на предел его срабатывания по температуре не влияет изменение температуры окружающей среды, что в некоторых условиях работы очень важно. Также они отличаются от тепловых тем, у них более точно определено время срабатывания.

Реле перегрузки

Функции данного устройства достаточно просты, однако, и довольно важны.

  1. Такой прибор способен выдержать кратковременный перепад по току во время запуска двигателя без разрыва цепи, что наиболее важно.
  2. Размыкание цепи происходит в том случае, если ток увеличивается до того значения, когда возникает угроза поломки защищаемого прибора.
  3. После того как перегрузка будет устранена, реле может вернуться в исходное положение автоматически или же может быть возвращено вручную.

Стоит отметить, что токовая защита электродвигателя от перегрузок при помощи реле осуществляется в соответствии с характеристикой срабатывания. Другими словами - в зависимости от класса прибора. Наиболее распространенными являются классы 10, 20 и 30. Первая группа - это реле, которые срабатывают в случае наличия перегрузки, в течение 10 секунд и, если числовое значение тока превышает 600% от номинального. Вторая группа срабатывает спустя 20 секунд и менее, третья, соответственно, спустя 30 секунд и менее.

Плавкие средства защиты и реле

В настоящее время довольно часто сочетают два средства защиты - плавкие предохранители и реле. Такая комбинация работает следующим образом. Плавкий предохранитель должен защищать двигатель от короткого замыкания, а потому у него должна быть достаточно большая емкость. Из-за этого он не может защитить устройство от более низких, но все же опасных токов. Именно для устранения этого недостатка в систему вводятся реле, которые реагируют на более слабые, но все же опасные колебания тока. Наиболее важно в данном случае настроить плавкий предохранитель таким образом, чтобы он сработал раньше, чем возникнут повреждения какого-либо элемента.

Наружные средства защиты

В настоящее время довольно часто используются усовершенствованные системы наружной защиты электродвигателя. Они могут защитить прибор от перенапряжения, перекоса фаз, способны устранять вибрации или же ограничивать число включений и выключений. К тому же у таких средств имеется встроенный тепловой датчик, который помогает контролировать температуру подшипников, статора. Еще одна особенность такого прибора в том, что он способен воспринимать и обрабатывать цифровой сигнал, который создает температурный датчик.

Основное предназначение наружных средств защиты - это сохранение работоспособности трехфазных двигателей. Помимо того, что такое оборудование способно защитить двигатель во время сбоя в электрической сети, оно также обладает еще несколькими преимуществами.

  • Наружное устройство может сформировать и подать сигнал о неисправности еще до того, как она нарушит работоспособность машины.
  • Проводит диагностику тех проблем, которые уже возникли.
  • Дает возможность провести проверку реле во время технического обслуживания.

Исходя из всего вышесказанного, можно утверждать, что устройств для защиты электродвигателя от перегрузки существует большое разнообразие. Кроме того, каждое из них способно защитить прибор от определенных негативных воздействий, а потому целесообразно их комбинировать.

Перегрузка электродвигателя возникает в следующих случаях:

  • при затянувшемся пуске или самозапуске;
  • по технологическим причинам у механизмов с колеблющейся нагрузкой (подъемники, прокатные станы и т.д.);
  • при перегрузке механизма, возникающей на угольных мельницах и дробилках при поступлении в них сырого угля и на других механизмах подобного типа;
  • в результате обрыва одной фазы;
  • при повреждении механической части электродвигателя или механизма, вызывающем увеличение момента М с и торможение электродвигателя.

Перегрузки бывают устойчивыми и кратковременными.

Для электродвигателя опасны только устойчивые перегрузки.

Сверхтоки, обусловленные пуском или самозапуском электродвигателя, кратковременны и самоликвидируются при достижении нормальной скорости вращения. Эти токи могут представлять опасность, только если процесс развертывания электродвигателя затянется или если при самозапуске окажется, что М д. нач. < М с. нач. . В последнем случае электродвигатель развернуться не сможет и длительно будет обтекаться пусковым током.

Значительное увеличение тока электродвигателя получается также при обрыве фазы, что встречается только у электродвигателей, защищаемых предохранителями, при перегорании одного из них. При номинальной загрузке в зависимости от параметров электродвигателя увеличение тока статора при обрыве фазы будет составлять примерно (1,6÷2,5) I ном. Эта перегрузка носит устойчивый характер. Также устойчивый характер носят сверхтоки, обусловленные механическими повреждениями электродвигателя или вращаемого им механизма и перегрузкой механизма.

Основной опасностью сверхтоков для электродвигателя является сопровождающее их повышение температуры отдельных частей и в первую очередь обмоток.

Повышение температуры ускоряет износ изоляции обмоток и снижает тем срок службы электродвигателя.

Перегрузочная способность электродвигателя определяется характеристикой зависимости между величиной сверхтока и допускаемым временем его протекания:

t=T a-1/k 2 -1

где t – допустимая длительность перегрузки, сек;

T – постоянная времени нагрева, сек;

a – коэффициент, зависящий от типа изоляции двигателя, а также периодичности и характера сверхтоков; для асинхронных электродвигателей в среднем а=1,3;

k – кратность сверхтока – отношение данного тока к номинальному току двигателя, т.е. k=I/I ном

Прежде защита от перегрузки устанавливалась с действием на отключение на всех электродвигателях, что приводило в ряде случаев к неправильным отключениям электродвигателей.

В настоящее время при решении вопроса об установке защиты от перегрузки на электродвигателе руководствуются условиями его работы:

  • на электродвигателях механизмов, не поврежденных технологическим перегрузкам (например, электродвигателях циркуляционных, питательных насосов и т.п.) и не имеющих тяжелых условий пуска или самозапуска, защита от перегрузки не устанавливается.
  • на электродвигателях, подверженных технологическим перегрузкам (например, электродвигателях мельниц, дробилок, багерных насосов и т.п.), а также на электродвигателях, самозапуск которых не обеспечивается, защита от перегрузки должна устанавливаться.
  • защита от перегрузки выполняется с действием на отключение в случае, если не обеспечивается самозапуск электродвигателя или с механизма не может быть снята технологическая перегрузка без остановки электродвигателя.
  • защита от перегрузки электродвигателя выполняется с действием на разгрузку механизма или сигнал, если технологическая перегрузка может быть снята с механизма автоматически или вручную персоналом без остановки механизма и электродвигатели находятся под наблюдением персонала.
  • на электродвигателях механизмов, могущих иметь как перегрузку, устраняемую при работе механизма, так и перегрузку, устранение которой невозможно без остановки механизма, целесообразно предусматривать действие защиты от сверхтоков с меньшей выдержкой времени на разгрузку механизма (если это возможно) и большей выдержкой времени на отключение электродвигателя. Ответственные электродвигатели собственных нужд электрических станций находятся под постоянным наблюдением дежурного персонала, поэтому защита их от перегрузки выполняется преимущественно с действием на сигнал.

Защиту электродвигателей, подверженных технологической перегрузке, желательно иметь такой, чтобы она, с одной стороны, защищала от недопустимых перегрузок, а с другой-давала возможность наиболее полно использовать перегрузочную характеристику электродвигателя с учетом предшествовавшей нагрузки и температуры окружающей среды.

Для того чтобы избежать непредвиденных сбоев, дорогостоящего ремонта и последующих потерь из-за простоя электродвигателя, очень важно оборудовать двигатель защитным устройством.


Защита двигателя имеет три уровня:


Внешняя защита от короткого замыкания установки . Устройства внешней защиты, как правило, являются предохранителями разных видов или реле защиты от короткого замыкания. Защитные устройства данного типа обязательны и официально утверждены, они устанавливаются в соответствии с правилами безопасности.


Внешняя защита от перегрузок , т.е. защита от перегрузок двигателя насоса, а, следовательно, предотвращение повреждений и сбоев в работе электродвигателя. Это защита по току.


Встроенная защита двигателя с защитой от перегрева , чтобы избежать повреждений и сбоев в работе электродвигателя. Для встроенного устройства защиты всегда требуется внешний выключатель, а для некоторых типов встроенной защиты двигателя требуется даже реле перегрузки.



Возможные условия отказа двигателя


Во время эксплуатации могут возникать различные неисправности. Поэтому очень важно заранее предусмотреть возможность сбоя и его причины и как можно лучше защитить двигатель. Далее приведён перечень условий отказа, при которых можно избежать повреждений электродвигателя:


Низкое качество электроснабжения:


Высокое напряжение


Пониженное напряжение


Несбалансированное напряжение/ ток (скачки)


Изменение частоты


Неверный монтаж, нарушение условий хранения или неисправность самого электродвигателя


Постепенное повышение температуры и выход её за допустимый предел:


Недостаточное охлаждение


Высокая температура окружающей среды


Пониженное атмосферное давление (работа на большой высоте над уровнем моря)


Высокая температура рабочей жидкости


Слишком большая вязкость рабочей жидкости


Частые включения/отключения электродвигателя


Слишком большой момент инерции нагрузки (свой для каждого насоса)


Резкое повышение температуры:


Блокировка ротора


Обрыв фазы


Для защиты сети от перегрузок и короткого замыкания при возникновении каких-либо из перечисленных выше условий отказа необходимо определить, какое устройство защиты сети будет использоваться. Оно должно автоматически отключать питание от сети. Плавкий предохранитель является простейшим устройством, выполняющим две функции. Как правило, плавкие предохранители соединяются между собой при помощи аварийного выключателя, который может отключить двигатель от сети питания. На следующих страницах мы рассмотрим три типа плавких предохранителей с точки зрения их принципа действия и вариантов применения: плавкий предохранительный выключатель, быстродействующие плавкие предохранители и предохранители с задержкой срабатывания.






Плавкий предохранительный выключатель - это аварийный выключатель и плавкий предохранитель, объединённые в едином корпусе. С помощью выключателя можно размыкать и замыкать цепь вручную, в то время как плавкий предохранитель защищает двигатель от перегрузок по току. Выключатели, как правило, используются в связи с выполнением сервисного обслуживания, когда необходимо прервать подачу тока.


Аварийный выключатель имеет отдельный кожух. Этот кожух защищает персонал от случайного контакта с электрическими клеммами, а также защищает выключатель от окисления. Некоторые аварийные выключатели оборудованы встроенными плавкими предохранителями, другие аварийные выключатели поставляются без встроенных плавких предохранителей и оснащены только выключателем.


Устройство защиты от перегрузок по току (плавкий предохранитель) должно различать перегрузки по току и короткое замыкание. Например, незначительные кратковременные перегрузки по току вполне допустимы. Но при дальнейшем увеличении тока устройство защиты должно срабатывать немедленно. Очень важно сразу предотвращать короткие замыкания. Выключатель с предохранителем - пример устройства, используемого для защиты от перегрузок по току. Правильно подобранные плавкие предохранители в выключателе размыкают цепь при токовых перегрузках.


Плавкие предохранители быстрого срабатывания


Быстродействующие плавкие предохранители обеспечивают отличную защиту от короткого замыкания. Однако кратковременные перегрузки, такие как пусковой ток электродвигателя, могут вызвать поломку плавких предохранителей такого вида. Поэтому быстродействующие плавкие предохранители лучше всего использовать в сетях, которые не подвержены действию значительных переходных токов. Обычно такие предохранители выдерживают около 500% своего номинального тока в течение одной четвёртой секунды. По истечении этого времени вставка предохранителя плавится и цепь размыкается. Таким образом, в цепях, где пусковой ток часто превышает 500% номинального тока предохранителя, быстродействующие плавкие предохранители использовать не рекомендуется.


Плавкие предохранители с задержкой срабатывания


Данный тип плавких предохранителей обеспечивает защиту и от перегрузки, и от короткого замыкания. Как правило, они допускают 5-кратное увеличение номинального тока на 10 секунд, и даже более высокие значения тока на более короткое время. Обычно этого достаточно, чтобы электродвигатель был запущен и плавкий предохранитель не открылся. С другой стороны, если возникают перегрузки, которые продолжаются больше, чем время плавления плавкого элемента, цепь также разомкнётся.



Время срабатывания плавкого предохранителя - это время плавления плавкого элемента (проволоки), которое требуется для того, чтобы цепь разомкнулась. У плавких предохранителей время срабатывания обратно пропорционально значению тока - это означает, что чем больше перегрузки по току, тем меньше период времени для отключения цепи.





В общем, можно сказать, что у электродвигателей насосов очень короткое время разгона: меньше 1 секунды. В этой связи для электродвигателей подойдут предохранители с задержкой времени срабатывания с номинальным током, соответствующим току полной нагрузки электродвигателя.


Иллюстрация справа демонстрирует принцип формирования характеристики времени срабатывания плавкого предохранителя. Ось абсцисс показывает соотношение между фактическим током и током полной нагрузки: если электродвигатель потребляет ток полной нагрузки или меньше, плавкий предохранитель не размыкается. Но при величине тока, в 10 раз превышающей ток полной нагрузки, плавкий предохранитель разомкнётся практически мгновенно (0,01 с). На оси ординат отложено время срабатывания.


Во время пуска через индукционный электродвигатель проходит достаточно большой ток. В очень редких случаях это приводит к выключению посредством реле или плавких предохранителей. Для уменьшения пускового тока используются различные методы пуска электродвигателя.

Что такое автоматический токовый выключатель и как он работает?

Автоматический токовый выключатель является устройством защиты от перегрузок по току. Он автоматически размыкает и замыкает цепь при заданном значении перегрузки по току. Если токовый выключатель применяется в диапазоне своих рабочих параметров, размыкание и замыкание не наносит ему никакого ущерба. Сразу же после возникновения перегрузки можно легко возобновить работу автоматического выключателя - он просто устанавливается в исходное положение.




Различают два вида автоматических выключателей: тепловые и магнитные.


Тепловые автоматические выключатели


Тепловые автоматические выключатели - это самый надёжный и экономичный тип защитных устройств, которые подходят для электродвигателей. Они могут выдержать большие амплитуды тока, которые возникают при пуске электродвигателя, и защищают электродвигатель от сбоев, таких как блокировка ротора.


Магнитные автоматические выключатели


Магнитные автоматические выключатели являются точными, надёжными и экономичными. Магнитный автоматический выключатель устойчив к изменениям температуры, т.е. изменения температуры окружающей среды не влияют на его предел срабатывания. По сравнению с тепловыми автоматическими выключателями, магнитные автоматические выключатели имеют более точно определённое время срабатывания. В таблице приведены характеристики двух типов автоматических выключателей.





Рабочий диапазон автоматического выключателя


Автоматические выключатели различаются между собой уровнем тока срабатывания. Это значит, что всегда следует выбирать такой автоматический выключатель, который может выдержать самый высокий ток короткого замыкания, который может возникнуть в данной системе.

Функции реле перегрузки

Реле перегрузки:


При пуске электродвигателя позволяют выдерживать временные перегрузки без разрыва цепи.


Размыкают цепь электродвигателя, если ток превышает предельно допустимое значение и возникает угроза повреждения электродвигателя.


Устанавливаются в исходное положение автоматически или вручную после устранения перегрузки.


IEC и NEMA стандартизуют классы срабатывания реле перегрузки.



Как правило, реле перегрузки реагируют на условия перегрузки в соответствии с характеристикой срабатывания. Для любого стандарта (NEMA или IEC) деление изделий на классы определяет, какой период времени требуется реле на размыкание при перегрузке. Наиболее часто встречающиеся классы: 10, 20 и 30. Цифровое обозначение отражает время, необходимое реле для срабатывания. Реле перегрузки класса 10 срабатывает в течение 10 секунд и менее при 600% тока полной нагрузки, реле класса 20 срабатывает в течение 20 секунд и менее, а реле класса 30 - в течение 30 секунд и менее.




Угол наклона характеристики срабатывания зависит от класса защиты электродвигателя. Электродвигатели IEC обычно адаптированы к определённому варианту использования. Это означает, что реле перегрузки может справляться с избыточным током, величина которого очень близка к максимальной производительности реле. Класс 10 - самый распространённый класс для электродвигателей IEC. Электродвигатели NEMA имеют внутренний конденсатор большей ёмкости, поэтому класс 20 для них применяется чаще.


Реле класса 10 обычно используется для электродвигателей насосов, так как время разгона электродвигателей составляет около 0,1-1 секунды. Для многих высокоинерционных промышленных нагрузок необходимо для срабатывания реле класса 20.



Плавкие предохранители служат для того, чтобы защитить установку от повреждений, которые могут быть вызваны коротким замыканием. В связи с этим плавкие предохранители должны иметь достаточную ёмкость. Более низкие токи изолируются с помощью реле перегрузки. Здесь номинальный ток плавкого предохранителя соответствует не рабочему диапазону электродвигателя, а току, который может повредить наиболее слабые составляющие установки. Как было упомянуто ранее, плавкий предохранитель обеспечивает защиту от короткого замыкания, но не защиту от перегрузок при низком токе.


На рисунке представлены наиболее важные параметры, формирующие основу согласованной работы плавких предохранителей в сочетании с реле перегрузки.




Очень важно, чтобы плавкий предохранитель сработал прежде, чем другие детали установки получат тепловое повреждение в результате короткого замыкания.

Современные наружные реле защиты двигателя

Усовершенствованные наружные системы защиты двигателя также обеспечивают защиту от перенапряжения, перекоса фаз, ограничивают число включений/выключений, устраняют вибрации. Кроме того, они позволяют контролировать температуру статора и подшипников через датчик температуры (PT100), измерять сопротивление изоляции и регистрировать температуру окружающей среды. В дополнение к этому усовершенствованные наружные системы защиты двигателя могут принимать и обрабатывать сигнал от встроенной тепловой защиты. Далее в этой главе мы рассмотрим устройство тепловой защиты.




Наружные реле защиты двигателя предназначены для защиты трёхфазных электродвигателей при угрозе повреждения двигателя за короткий или более длительный период работы. Кроме защиты двигателя, наружное реле защиты имеет ряд особенностей, которые обеспечивают защиту электродвигателя в различных ситуациях:


Подаёт сигнал прежде, чем возникает неисправность в результате всего процесса


Диагностирует возникшие неисправности


Позволяет выполнять проверку работы реле во время техобслуживания


Контролирует температуру и наличие вибрации в подшипниках


Можно подключить реле перегрузки к центральной системе управления зданием для постоянного контроля и оперативной диагностики неисправностей. Если в реле перегрузки установлено наружное реле защиты, сокращается период вынужденного простоя из-за прерывания технологического процесса в результате поломки. Это достигается благодаря быстрому обнаружению неисправности и недопущению повреждений электродвигателя.


Например, электродвигатель может быть защищён от:


Перегрузки


Блокировки ротора


Заклинивания


Частых повторных пусков


Разомкнутой фазы


Замыкания на массу


Перегрева (с помощью сигнала, поступающего от электродвигателя через датчик PT100 или терморезисторы)


Малого тока


Предупреждающего сигнала о перегрузке

Настройка наружного реле перегрузки

Ток полной нагрузки при определённом напряжении, указанном в фирменной табличке, является нормативом для настройки реле перегрузки. Так как в сетях разных стран присутствует различное напряжение, электродвигатели для насосов могут использоваться как при 50 Гц, так и при 60 Гц в широком диапазоне напряжений. В связи с этим в фирменной табличке электродвигателя указывается диапазон тока. Если нам известно напряжение, мы можем вычислить точную допустимую нагрузку по току.


Пример вычисления


Зная точную величину напряжения для установки, можно рассчитать ток полной нагрузки при 254 / 440 Y B, 60 Гц.




Данные отображаются в фирменной табличке, какпоказано в иллюстрации.




Вычисления для 60 Гц





Коэффициент усиления напряжения определяется следующими уравнениями:




Расчет фактического тока полной нагрузки (I):




(Значения тока для подключения по схеме «треугольник» и «звезда» при минимальных значениях напряжения)




(Значения тока для подключения по схеме «треугольник» и «звезда» при максимальных значениях напряжения)


Теперь с помощью первой формулы можно рассчитать ток полной нагрузки:


I для «треугольника»:



I для «звезды»:



Величины для тока полной нагрузки соответствуют допустимому значению тока полной нагрузки электродвигателя при 254 Δ/440 Y В, 60 Гц.





Внимание : наружное реле перегрузки электродвигателя всегда устанавливается на номинальное значение тока, указанное в фирменной табличке.


Однако если электродвигатели сконструированы с учётом коэффициента нагрузки, который затем указывается в фирменной табличке, напр., 1.15, заданное значение тока для реле перегрузки может быть увеличено на 15% по сравнению с током полной нагрузки или коэффициентом нагрузки в амперах (SFA - service factor amps), который, как правило, указывается в фирменной табличке.





Для чего нужна встроенная защита двигателя, если электродвигатель уже оснащён реле перегрузки и плавкими предохранителями? В некоторых случаях реле перегрузки не регистрирует перегрузку электродвигателя. Например, в ситуациях:


Когда электродвигатель закрыт (недостаточно охлаждается) и медленно нагревается до опасной температуры.


При высокой температуре окружающей среды.


Когда наружная защита двигателя настроена на слишком высокий ток срабатывания или установлена неправильно.


Когда электродвигатель перезапускается несколько раз в течение короткого периода времени и пусковой ток нагревает электродвигатель, что в конечном счёте, может его повредить.


Уровень защиты, который может обеспечить внутренняя защита, указывается в стандарте IEC 60034-11.


Обозначение TP


TP - аббревиатура «thermal protection» - тепловая защита. Существуют различные типы тепловой защиты, которые обозначаются кодом TP (TPxxx). Код включает в себя:


Тип тепловой перегрузки, для которой была разработана тепловая защита (1-я цифра)


Число уровней и тип действия (2-я цифра)



В электродвигателях насосов, самыми распространёнными обозначениями TP являются:


TP 111: Защита от постепенной перегрузки


TP 211: Защита как от быстрой, так и от постепенной перегрузки.



Обозначение

Техническая егрузка и ее варианты (1-я цифра)

Количество уровней и функциональная область (2-я цифра)

ТР 111

Только медленно (постоянная перегрузка)

1 уровень при отключении

ТР 112

ТР 121

ТР 122

ТР 211

Медленно и быстро (постоянная перегрузка, блокировка)

1 уровень при отключении

ТР 212

ТР 221 ТР 222

2 уровня при аварийном сигнале и отключении

ТР 311 ТР 321

Только быстро (блокировка)

1 уровень при отключении


Изображение допустимого температурного уровня при воздействии на электродвигатель высокой температуры. Категория 2 допускает более высокие температуры, чем категория 1.


Все однофазные электродвигатели Grundfos оснащены защитой двигателя по току и температуре в соответствии с IEC 60034-11. Тип защиты двигателя TP 211 означает, что она реагирует как на постепенное, так и на быстрое повышение температуры.

Сброс данных в устройстве и возврат в начальное положение осуществляется автоматически. Трёхфазные электродвигатели Grundfos MG мощностью от 3.0 кВт стандартно оборудованы датчиком температуры PTC.





Эти электродвигатели были испытаны и одобрены как электродвигатели TP 211, которые реагируют и на медленное, и на быстрое повышение температуры. Другие электродвигатели, используемые для насосов Grundfos (MMG модели D и E, Siemens, и т.п.), могут быть классифицированы как TP 211, но, как правило, они имеют тип защиты TP 111.





Необходимо всегда учитывать данные, указанные на фирменной табличке. Информацию о типе защиты конкретного электродвигателя можно найти на фирменной табличке - маркировка с буквенным обозначением TP (тепловая защита) согласно IEC 60034-11. Как правило, внутренняя защита может быть организована при помощи двух типов устройств защиты: Устройств тепловой защиты или терморезисторов.





Устройства тепловой защиты, встраиваемые в клеммную коробку


В устройствах тепловой защиты, или термостатах, используется биметаллический автоматический выключатель дискового типа мгновенного действия для размыкания и замыкания цепи при достижении определённой температуры. Устройства тепловой защиты называют также «кликсонами» (по названию торговой марки от Texas Instruments). Как только биметаллический диск достигает заданной температуры, он размыкает или замыкает группу контактов в подключённой схеме управления. Термостаты оснащены контактами для нормально разомкнутого или нормально замкнутого режима работы, но одно и то же устройство не может использоваться для двух режимов. Термостаты предварительно откалиброваны производителем, и их установки менять нельзя. Диски герметично изолированы и располагаются на контактной колодке.


Через термостат может подаваться напряжение в цепи аварийной сигнализации - если он нормально разомкнут, или термостат может обесточивать электродвигатель - если он нормально замкнут и последовательно соединён с контактором. Так как термостаты находятся на наружной поверхности концов катушки, то они реагируют на температуру в месте расположения. Применительно к трёхфазным электродвигателям термостаты считаются нестабильной защитой в условиях торможения или в других условиях быстрого изменения температуры. В однофазных электродвигателях термостаты служат для защиты при блокировке ротора.





Тепловой автоматический выключатель, встраиваемый в обмотки


Устройства тепловой защиты могут быть также встроены в обмотки, см. иллюстрацию.





Они действуют как сетевой выключатель как для однофазных, так и для трёхфазных электродвигателей. В однофазных электродвигателях мощностью до 1,1 кВт устройство тепловой защиты устанавливается непосредственно в главном контуре, чтобы оно выполняло функцию устройства защиты на обмотке. Кликсон и Термик - примеры тепловых автоматических выключателей. Эти устройства называют также PTO (Protection Thermique a Ouverture).





Внутренняя установка


В однофазных электродвигателях используется один одинарный тепловой автоматический выключатель. В трёхфазных электродвигателях - два последовательно соединённых выключателя, расположенных между фазами электродвигателя. Таким образом, все три фазы контактируют с тепловым выключателем. Тепловые автоматические выключатели можно установить на конце обмоток, однако это приводит к увеличению времени реагирования. Выключатели должны быть подключены к внешней системе управления. Таким образом электродвигатель защищается от постепенной перегрузки. Для тепловых автоматических выключателей реле - усилителя не требуется.


Тепловые выключатели НЕ ЗАЩИЩАЮТ двигатель при блокировке ротора.

Принцип действия теплового автоматического выключателя

На графике справа показана зависимость сопротивления от температуры для стандартного теплового автоматического выключателя. У каждого производителя эта характеристика своя. TN обычно лежит в интервале 150-160 °C.





Подключение


Подключение трёхфазного электродвигателя со встроенным тепловым выключателем и реле перегрузки.


Обозначение TP на графике


Защита по стандарту IEC 60034-11:


TP 111 (постепенная перегрузка). Для того чтобы обеспечить защиту при блокировке ротора, электродвигатель должен быть оборудован реле перегрузки.






Второй тип внутренней защиты - это терморезисторы, или датчики с положительным температурным коэффициентом (PTC). Терморезисторы встраиваются в обмотки электродвигателя и защищают его при блокировке ротора, продолжительной перегрузке и высокой температуре окружающей среды. Тепловая защита обеспечивается с помощью контроля температуры обмоток электродвигателя с помощью PTC датчиков. Если температура обмоток превышает температуру отключения, сопротивление датчика меняется соответственно изменению температуры.








В результате такого изменения внутренние реле обесточивают контур управления внешнего контактора. Электродвигатель охлаждается, и восстанавливается приемлемая температура обмотки электродвигателя, сопротивление датчика понижается до исходного уровня. В этот момент происходит автоматическое приведение модуля управления в исходное положение, если только он предварительно не был настроен на сброс данных и повторное включение вручную.


Если терморезисторы установлены на концах катушки самостоятельно, защиту можно классифицировать только как TP 111. Причина в том, что терморезисторы не имеют полного контакта с концами катушки, и, следовательно, не могут реагировать так быстро, как если бы они изначально были встроены в обмотку.





Система, чувствительная к температуре терморезистора, состоит из датчиков с положительным температурным коэффициентом (PTC), устанавливаемых последовательно, и твердотельного электронного выключателя в закрытом блоке управления. Набор датчиков состоит из трёх - по одному на фазу. Сопротивление в датчике остаётся относительно низким и постоянным в широком диапазоне температур, с резким увеличением при температуре срабатывания. В таких случаях датчик действует как твердотельный тепловой автоматический выключатель и обесточивает контрольное реле. Реле размыкает цепь управления всего механизма для отключения защищаемого оборудования. Когда температура обмотки восстанавливается до допустимого значения, блок управления можно привести в прежнее положение вручную.


Все электродвигатели Grundfos мощностью от 3 кВт и выше оснащены терморезисторами. Система терморезисторов с положительным температурным коэффициентом (PTC) считается устойчивой к отказам, так как в результате выхода из строя датчика или отсоединении провода датчика возникает бесконечное сопротивление, и система срабатывает так же, как при повышении температуры, - происходит обесточивание контрольного реле.

Принцип действия терморезистора

Критические значения зависимости сопротивление/ температура для датчиков системы защиты электродвигателя определены в стандартах DIN 44081/ DIN 44082.


На кривой DIN показано сопротивление в датчиках терморезистора в зависимости от температуры.





По сравнению с PTO терморезисторы имеют следующие преимущества:


Более быстрое срабатывание благодаря меньшему объёму и массе


Лучше контакт с обмоткой электродвигателя


Датчики устанавливаются на каждой фазе


Обеспечивают защиту при блокировке ротора

Обозначение TP для электродвигателя с PTC

Защита двигателя TP 211 реализуется, только когда терморезисторы PTC полностью установлены на концах обмоток на заводе-изготовителе. Защита TP 111 реализуется только при самостоятельной установке на месте эксплуатации. Электродвигатель должен пройти испытания и получить подтверждение о соответствии его маркировке TP 211. Если электродвигатель с терморезисторами PTC имеет защиту TP 111, он должен быть оснащён реле перегрузки для предотвращения последствий заклинивания.


Соединение


На рисунках справа представлены схемы подключения трёхфазного электродвигателя, оснащённого терморезисторами PTC, с расцепителями Siemens. Для реализации защиты как от постепенной, так и от быстрой перегрузки, мы рекомендуем следующие варианты подключения электродвигателей, оснащённых датчиками PTC, с защитой TP 211 и TP 111.






Если электродвигатель с терморезистором имеет маркировку TP 111, это значит, что электродвигатель защищён только от постепенной перегрузки. Для того чтобы защитить электродвигатель от быстрой перегрузки, электродвигатель должен быть оборудован реле перегрузки. Реле перегрузки должно подключаться последовательно к реле PTC.






Защита TP 211 двигателя обеспечивается, только если терморезистор PTC полностью встроен в обмотки. Защита TP 111 реализуется только при самостоятельном подключении.


Терморезисторы разработаны в соответствии со стандартом DIN 44082 и выдерживают нагрузку Umax 2,5 В DC. Все отключающие элементы предназначены для приёма сигналов от терморезисторов DIN 44082, т.е терморезисторов компании Siemens.


Обратите внимание : Очень важно, чтобы встроенное устройство PTC было последовательно соединено с реле перегрузки. Многократные повторные включения реле перегрузки могут привести к сгоранию обмотки в случае блокировки электродвигателя или пуска при высокой инерции. Поэтому очень важно, чтобы температурные показатели и данные по потребляемому току устройства PTC и реле

Нуждается в надежной защите от теплового перегрева, короткого замыкания и всевозможных перегрузок, которые могут быть вызваны аварийными ситуациями или неисправностями. Чтобы не допустить подобных ситуаций, в промышленности производится довольно много разных устройств, которые как в отдельном порядке, так и в комплекте с другими средствами, образуют блок мощной защиты электродвигателя. Помимо этого, в современные схемы обязательно включают различные элементы, предназначенные для того, чтобы комплексно защитить электрооборудование в случае исчезновении напряжения одной или сразу нескольких фаз питания. Защита электродвигателей очень важна в любом производстве, ведь без нее довольно трудно представить полноценную работу станков и агрегатов.

Существуют сложные средства защиты электродвигателей, использующихся для противодействия аварийным ситуациям, в числе которых могут быть такие случаи как, например, несанкционированный пуск, работа сразу на двух фазах, работа при низком или высоком напряжении, короткое замыкание электрической цепи.

К таким средствам относятся предохранители или автоматические выключатели с кривой D (они защищают электродвигатель от токов короткого замыкания). Особенность их работы заключается в том, что такие автоматические устройства не отключаются при запуске электродвигателя, если сила его пускового тока достигает высокой отметки на период, который по времени меньше одной секунды. Наиболее популярная марка подобных выключателей — это, например, Acti 9.

Также могут использоваться специальные автоматические выключатели для защиты электродвигателей. Автомат защиты электродвигателя имеет электромагнитный и регулируемый тепловой расцепитель, что дает возможность защитить агрегат от короткого замыкания и перегрузки. В результате существенно уменьшается время простоя двигателя, а также снижаются расходы на его техобслуживание. Здесь можно упомянуть такие марки как, например, GV2(3), PKZM, MPE 25 и пр.Используются для защиты и тепловые реле, которые устанавливаются на контакторы (обеспечивают защиту от перегрузки). Реле тепловой защиты отключает трехфазные электродвигатели при перегреве с использованием встроенного вспомогательного выключателя. Известные марки таких реле — это, в частности, SIRIUS и ZB.Реле контроля напряжения, асимметрии и наличия фаз в свою очередь обесточивает двигатель в случае пропадания одной из фаз, превышении или понижении допустимого напряжения. Благодаря такому реле в случае аварии трехфазная нагрузка автоматически отключается. Кроме того, реле контроля напряжения самостоятельно возвращается к рабочему режиму после того, как сеть восстанавливается. Популярные марки подобных реле выпускаются компаниями EKF и ABB.

Устройство защиты электродвигателя — это залог его стабильной работы. Основной принцип работы таких устройств заключается в том, что они следят за потреблением тока двигателем, а также измеряют температуру его обмотки и отключают двигатель, когда обмотка нагревается больше предельно допустимой температуры.

Поделиться: