Дифференциальные уравнения в частных производных. Дифференциальные уравнения с частными производными

Уравнения в частных производных второго порядка Лекция №3-4

Тема : Уравнения в частных производных второго порядка.

Вопросы:

1. Общий вид уравнения второго порядка. Линейные уравнения второго порядка в частных производных. Линейные однородные и линейные неоднородные уравнения.

2. Свойства решений линейного однородного и линейного неоднородного уравнений.

3. Классификация дифференциальных уравнений второго порядка.

4. Приведение линейного уравнения к каноническому виду: гиперболический тип, параболический тип и эллиптический тип.

5. Постановка основных задач для линейных дифференциальных уравнений второго порядка.

Уравнение вида

есть дифференциальное уравнение второго порядка с искомой функцией z от двух переменных х и у .

Уравнения математической физики в отличие от уравнений с частными производными второго порядка общего вида (3.1) являются линейными , т.е. линейно зависят от искомой функции и ее частных производных. Например, в случае двух независимых переменных они имеют вид

Уравнение (3.2) называется однородным, если
. Если
, то уравнение (3.2) называется неоднородным.

Обозначим левую часть уравнения (3.2) через
, тогда (3.2) можно записать в виде:

. (3.3)

Соответствующее однородное уравнение примет вид

. (3.4)

- линейный дифференциальный оператор. Самостоятельно проверить свойства линейности оператора
.

Из свойств линейности оператора
непосредственно вытекают следующие утверждения:

Теорема 3.1. Если
- решение линейного однородного уравнения (3.4), то функция
также является решением уравнения (3.4), гдеС – произвольная постоянная.

Теорема 3.2. Если
и
- решения линейного однородного уравнения (3.4), то сумма
+

Следствие. Линейная комбинация с произвольными постоянными коэффициентами k решений уравнения (3.4)
также является решением этого уравнения.

В отличие от обыкновенных линейных однородных дифференциальных уравнений, имеющих конечное число линейно независимых частных решений, линейная комбинация которых дает общее решение этого уравнения, уравнения в частных производных могут иметь бесконечное множество линейно независимых частных решений.

Например. Уравнение

имеет общее решение
, поэтому его решениями будут, например, функции
.

Для линейного неоднородного

. (3.5)

уравнения справедливы следующие утверждения:

Теорема 3.3. Если
- решение линейного неоднородного уравнения (3.5), а
- решение соответствующего однородного уравнения (3.4), сумма
также является решением неоднородного уравнения (3.5).

Теорема 3.4. Если
- решение уравнения
, а
- решения уравнения
, то сумма
+
является решением уравнения
.

Рассмотрим классификацию дифференциальных уравнений второго порядка с двумя независимыми переменными.

Определение. Линейное дифференциальное уравнение второго порядка (3.2) в некоторой области
на плоскостихОу называется


Простейшим из уравнений гиперболического типа является волновое уравнение

.

Оно встречается в задачах, связанных с колебательными процессами.

Простейшим из уравнений эллиптического типа является уравнение Лапласа

.

К интегрированию этого уравнения приходят при изучении стационарных процессов.

Простейшим уравнением параболического типа является уравнение теплопроводности (уравнение Фурье)

.

Оно часто встречается при изучении процессов теплопроводности и диффузии.

Позже мы с вами рассмотрим эти уравнения подробнее.

В курсе математической физики также изучаются волновое уравнение, уравнение Лапласа и уравнение Фурье более общего вида:

,
,

,

,
.

Приведем уравнение (3.2) к каноническому виду в достаточно малой окрестности любой точки, в которой задано это уравнение. Предположим, что коэффициенты А , В и С в уравнении (3.2) принадлежат классу
в некоторой окрестности и нигде в ней не обращаются в нуль одновременно. Для определенности можно считать, что
в этой окрестности. Действительно, в противном случае может оказаться, что
, но тогда меняя местамих и у , получим уравнение у которого
. Если жеА и С обращаются одновременно в нуль в какой-нибудь точке, то
в окрестности этой точки. В таком случае после деления на 2В уравнение (3.2) уже будет иметь канонический вид:

Перейдем теперь к новым переменным

,

,
, (3.6)

,

,

,

,

.

Поэтому уравнение (3.2) примет вид

Потребуем, чтобы функции
и
обращали в нуль коэффициенты
и
, т.е. удовлетворяли уравнениям:

Так как
, то эти уравнения эквивалентны линейным уравнениям

,
, (3.7)

где
,
,
.

Как мы с вами заметили, в зависимости от возможны три типа уравнений. Рассмотрим отдельно эти три случая.


В этом случае уравнение (3.2) приводится к каноническому виду:

. (3.8)

Замена переменных
,
приводит уравнение (3.2) к другому, эквивалентному, каноническому виду:

. (3.9)

Для доказательства представления (3.8) покажем, что существует, по крайней мере, одна пара решений иуравнений (3.7), удовлетворяющих условиям (3.6). Установим сначала связь этих решений с характеристиками уравнения (3.2).

Предположим, что существуют решения уравнений (3.7), такие что
,
в рассматриваемой окрестности, тогда кривые

,

определяют два семейства характеристик уравнения (3.2). Докажем теперь следующее вспомогательное утверждение.

Лемма. Пусть функция
такая, что
. Для того, чтобы семейство кривых
определяло характеристики уравнения (3.2), необходимо и достаточно, чтобы выражение
было общим интегралом одного из обыкновенных дифференциальных уравнений

,
. (3.10)

Уравнения (3.10) называются дифференциальными уравнениями характеристик уравнения (3.2).

Доказательство. 1. Докажем необходимость. Пусть
- семейство характеристик уравнения (3.2). Из условия
следует, что данное семейство заполняет некоторую окрестностьD , через каждую точку которой проходит одна и только одна характеристика. Пусть
. Тогда, если в преобразовании (3.6) взять, например,
, то в этой окрестности функция
будет удовлетворять уравнению

.

Так как на каждой характеристике справедливо соотношение

,
,

,

то поскольку
, получаем

, или
,

т.е.
есть общий интеграл первого из уравнений (3.10). Необходимость доказана.

2. Докажем достаточность. Пусть
есть общий интеграл одного из уравнений (3.10), например, первого из них. По определению это значит, что если функция
является решением этого уравнения, то

,

поэтому, продифференцировав последнее тождество по х , будем иметь

,

и, следовательно, на каждой линии
выполняется соотношение

. (3.11)

Но по теореме существования и единственности решения для обыкновенных дифференциальных уравнений через каждую точку из рассматриваемой окрестности проходит одна интегральная кривая
этого уравнения. Поэтому уравнение (3.11) выполняется во всех точках рассматриваемой окрестности. А так как по условию
,
, то кривые
являются характеристиками уравнения (3.2). Лемма доказана.

На основании доказанной леммы общие интегралы уравнений (3.10):

, и

такие, что
,
,
, определяют два семейства характеристик уравнения (3.2). Причем, так как
, то и
, а так же

Таким образом, семейства характеристик
,
образуют семейства координатных линий и функции
и
можно принять за новые переменные. При этом в уравнении (*) коэффициенты
и
будут равны нулю и

Поэтому, разделив уравнение (*) на 2
, получим уравнение в канонической форме (3.8).


Уравнение (3.2) приводится к каноническому виду

.

Так как в некоторой окрестности
, то
, поэтому дифференциальные уравнения (3.7) совпадают и равны

.

Следовательно, мы получили одно семейство характеристик
уравнения (3.2), определяемое в силу леммы, общим интегралом уравнения

,

таким что
и
. В качестве второго семейства координатных линий выберем прямые
. В результате замена переменных

,
,

, ,
.

Разделив уравнение (*) на коэффициент
, получим уравнение в канонической форме.


Если коэффициенты А , В и С в уравнении (3.2) – аналитические функции в окрестности некоторой точки. Тогда это уравнение приводится к каноническому виду

.

В этом случае, коэффициенты иуравнений (3.7) – аналитические функции, причем при действительных
:
. Из теоремы Ковалевской следует, что в достаточно малой окрестности существует аналитическое решение
уравнения

,

удовлетворяющее условию
. Положим теперь

,
, (3.12)

где
- функция, комплексно сопряженная с
. Функция
удовлетворяет второму уравнению из (3.7):

,

поскольку функция
удовлетворяет первому уравнения из (3.7), т.е.

Так как функции
и
аналитические, то
и их якобиан

Поэтому функции
и
можно взять за новые переменные. По построению функция
удовлетворяет уравнению

Выделим действительную и мнимую части и переходя к новым переменным пользуясь формулами (3.12), получим

,

Учитывая формулы для коэффициентов
получаем, что
и
в переменных
и
. Далее, поскольку
и
, то
. Разделив уравнение (*) на
, приведем его к каноническому виду

.

Постановка основных задач для линейных дифференциальных уравнений второго порядка.

Чтобы полностью описать тот или иной физический процесс, необходимо кроме самого уравнения, описывающего этот процесс, задать начальное состояние этого процесса (начальные условия) и режим на границе той области
, в которой происходит этот процесс (граничные условия). Это связано с неединственностью решения дифференциальных уравнений. Так, например, для уравнений в частных производных решение зависит от произвольных функций. Поэтому, чтобы выделить решение, описывающее реальный физический процесс, необходимо задать дополнительные условия. Такими дополнительными условиями и являются краевые условия (начальные и граничные). Соответствующая задача называется краевой задачей .

Выделяют три основных типа краевых задач для дифференциальных уравнений:


Пусть X 1 , X 2 , ..., X n - заданные функции переменных x 1 , x 2 , ..., x n .

Чтобы решить линейное однородное уравнение в частных производных первого порядка:

необходимо решить систему обыкновенных дифференциальных уравнений (уравнение характеристик):
:
Далее нужно представить решение в виде:
φ 1 (x 1 , x 2 , ..., x n ) = C 1 ,
φ 2 (x 1 , x 2 , ..., x n ) = C 2 ,
..................
φ n-1 (x 1 , x 2 , ..., x n ) = C n-1 ,
где C k - постоянные.
После чего сразу получаем общее решение:
,
где F - произвольная функция от n - 1 аргументов.

Если нужно получить частное решение с определенными граничными условиями, то необходимо подставить значения переменных из граничных условий в общее решение и найти вид функции F .

Линейные неоднородные уравнения в частных производных первого порядка

Пусть X 1 , X 2 , ..., X n+1 - заданные функции от переменных x 1 , x 2 , ..., x n и z .

Чтобы решить линейное неоднородное уравнение в частных производных первого порядка:
,
необходимо решить уравнение характеристик:
.
Решение этой системы нужно представить в следующем виде:
φ 1 (x 1 , x 2 , ..., x n , z ) = C 1 ,
φ 2 (x 1 , x 2 , ..., x n , z ) = C 2 ,
..................
φ n (x 1 , x 2 , ..., x n , z ) = C n .
После чего сразу получаем общий интеграл в неявном виде:

где F - произвольная функция. Также общий интеграл можно представить в различных вариантах, например:
φ 1 = F(φ 2 , φ 3 , ..., φ n ) ,
φ 2 = F(φ 1 , φ 3 , ..., φ n ) ,
и т. д.

Примеры решений линейных уравнений в частных производных первого порядка

Однородное уравнение

Условие задачи

Найти общее решение линейного однородного уравнения в частных производных первого порядка и решить задачу Коши с указанным граничным условием:
,
при .

Решение

Это линейное однородное уравнение в частных производных первого порядка. Составляем уравнение характеристик:

Это уравнение характеристик содержит три уравнения:
;
;
.
Нам нужно выбрать и решить любые два из них. Тогда третье будет выполнено автоматически.

Выбираем и решаем первое уравнение:

Здесь переменные уже разделены, интегрируем:

Интегралы табличные,

Потенцируем:

Отсюда




Или:

интегрирующего множителя . Умножим на x -1 и преобразуем:



Интегрируем:

Подставим полученное ранее выражение C 1 = x y 2 :



Общее решение исходного уравнения в частных производных имеет вид:

где F - произвольная функция от двух аргументов F(φ 1 , φ 2) . Найдем ее вид из граничного условия
при .

Рассматриваем решение на границе.
Положим x y = -1 :


Отсюда


На границе
.


F(φ 1 , φ 2 ) = φ 1 φ 2 .
Такой же вид она имеет и во всей области
Подставляя
;
,
получаем частное решение исходного уравнения в частных производных с заданным граничным условием:

Ответ

Общее решение:

где F - произвольная функция от двух аргументов F(φ 1 , φ 2 ) .

Частное решение:

Неоднородное уравнение

Условие задачи

Найти поверхность, удовлетворяющую данному уравнению
,
и проходящую через данную окружность x + y + z = 0 , x 2 + y 2 + z 2 = a 2 .

Решение

Это линейное неоднородное уравнение в частных производных первого порядка. Составляем уравнение характеристик:

Оно содержит три уравнения:
;
;
.
Нам нужно выбрать и решить любые два из них. Тогда третье удовлетворится автоматически. Выбираем первое и второе уравнения.

Решаем уравнение:

Умножаем на 2 z и интегрируем:

Интегралы табличные,

Потенцируем:

Отсюда
x = C 1 y

Подставим во второе уравнение:


Или:

Замечаем, что , тогда

Это линейное уравнение. Решаем с помощью интегрирующего множителя . Разделим на y 2 и преобразуем:


Интегрируем:

Подставим полученное ранее выражение и преобразуем:

Итак, мы нашли два интеграла уравнения характеристик:

Для удобства дальнейших вычислений заметим, что функция от постоянной также является постоянной. Поэтому запишем интегралы в виде:

Общий интеграл исходного уравнения в частных производных имеет вид:
F(φ 1 , φ 2) = 0
Но, поскольку F - произвольная функция от двух аргументов, то общий интеграл можно записать также в виде:
φ 1 = F(φ 2) ,
где F - произвольная функция от одного аргумента.

Найдем вид этой функции, рассматривая решение на границе.
На границе, x 2 + y 2 + z 2 = a 2 , .
Из уравнения x + y + z = 0 , z = -(x + y) . Подставим в x 2 + y 2 + z 2 = a 2 и преобразуем:
x 2 + y 2 + (x + y) 2 = a 2
x 2 + y 2 + x 2 + 2 xy + y 2 = a 2
2 x 2 + 2 xy + 2 y 2 = a 2
Разделив на y 2 , имеем

Итак, мы нашли, что на границе:

.
Подставим в выражение общего интеграла:
φ 1 = F(φ 2)
.
Сделаем подстановку
:
.

Итак, мы нашли, что на границе функция F имеет вид:
.
Такой же вид она имеет и во всей области, тогда
.
Подставляем выражения для φ 1 и φ 2 :


.
Умножим на a 2 y 2 .

Определение: Уравнение, содержащее несколько независимых переменных, функцию от этих переменных и ее частные производные по этим переменным, называется дифференциальным уравнением в частных производных. линейный дифференциальный порядок переменный

Например, уравнение

является уравнением в частных производных, в котором x, y, z являются независимыми переменными, а ц(x,y,z) - искомая функция. При математическом описании различных процессов природы чаще приходится сталкиваться именно с дифференциальными уравнениями в частных производных, так как в природе обычно встречается зависимость переменных величин от нескольких независимых переменных. Например, изучая распространение тепла в каком-либо теле, мы должны считать температуру тела в любой точке функцией от трех координат этой точки в пространстве, а если температура еще меняется с течением времени, то она является функцией четырех переменных: x, y, z и t . Изучая колебания какой-либо упругой пластинки, мы имеем дело с функцией трех переменных, так как величина смещения точек пластинки зависит и от координат x и y точек пластинки и от времени.

Для уравнений в частных производных вводится также понятие порядка уравнения, определяемого наивысшим порядком входящих в уравнение частных производных. Так, например, уравнение

является дифференциальным уравнением в частных производных второго порядка.

Дифференциальные уравнения в частных производных также имеют бесконечное множество решений. Общее решение дифференциального уравнения в частных производных содержит произвольную функцию (общее решение обыкновенного дифференциального уравнения содержало только произвольные постоянные). Начальные данные задачи, с помощью которых можно выделять одно частное решение из общего решения уравнения в частных производных обычно распадаются на так называемые начальные условия, т. е. условия, которым удовлетворяет искомая функция в начале исследуемого процесса, и граничные условия, определяющие обычно некоторые значения искомой функции в зависимости от объекта, в котором происходит изучаемый процесс, и от положения этого объекта в пространстве или на плоскости.

Рассмотрим задачу, приводящую к дифференциальному уравнению в частных производных второго порядка.

Задача о малых свободных поперечных колебаниях натянутой струны.

Пусть по оси Ox натянута тонкая однородная нить (струна), которая может изгибаться. Натяжение, при котором струна находится в состоянии равновесия и натянута по оси Ox , обозначим T 0 . Если вывести струну из положения равновесия, то она начнет колебаться. Изучим характер этих колебаний. Будем считать, что движение происходит в одной плоскости и что точки струны смещаются перпендикулярно оси Ox (такие колебания называются поперечными). Обозначим через U(x,t) смещение точки струны с абсциссой x в момент времени t . На рисунке 1 смещение U=NM .

Будем исследовать малые колебания струны, т. е. такие при которых U и (угловой коэффициент касательной к кривой в точке М) малы. Рассмотрим малый участок струны ММ".

В силу предположения о том, что мала, т. е. что форма струны мало отличается от прямолинейной, можно будет приближенно заменять длину дуги ММ" длиной отрезка NN " на оси Ox . Рассмотрим силы, действующие на участке MM ".

Внутренние силы, возникающие при указанной деформации струны, сводятся к натяжению, так как при деформации струна на некоторых участках растягивается, а на некоторых сжимается.

Ввиду сделанного предположения о малости деформаций, считаем, что величина натяжения во всех точках струны одинакова и равна T 0 . Натяжение T 0 в точке М направлено по касательной к кривой в М влево, а натяжение T 0 в точке M " направлено по касательной к кривой в M " вправо. Так как мы предположили, что смещение точек струны происходит только перпендикулярно оси Ox , то нас интересует только действие вертикальных составляющих натяжения. Составим сумму вертикальных составляющих натяжения в M и M ":

Можно sinб заменить через tgб , так как при малых б можно отбросить как бесконечно малую высшего порядка малости по сравнению с tgб :

Тогда сумма вертикальных составляющих натяжения принимает вид:

В квадратных скобках стоит разность значений величины в точках M " и M ; ее можно считать приращением величины на участке MM ", а приращение

можно с точностью до бесконечно малых высшего порядка заменить дифференциалом этой величины:

Таким образом, получаем окончательное выражение для силы, действующей на участке MM ":

Ускорение движения в любой точке равно второй производной от пройденного пути по времени, т. е. равно. Обозначим линейную плотность струны через с (она постоянна по условию задачи), и тогда масса участка струны MM " равна

Теперь составим уравнение движения по закону Ньютона:

откуда, обозначив

Это дифференциальное уравнение второго порядка в частных производных, из которого надо найти функцию двух переменных U(x,t) .

Рассмотрим тот способ решения этого уравнения, который был дан в XVIII веке французским математиком Даламбером. Будем считать, что струна бесконечно простирается в обе стороны по оси Ox . В этом случае граничные условия в задаче отсутствуют, а начальные условия задачи состоят в том, что в начальный момент времени известно смещение в каждой точке струны и скорость:

Введем новые независимые переменные о и з , связанные со старыми x и t следующими формулами:

Тогда функцию U(x,t) можно рассматривать, как сложную функцию; зависимость от x и t осуществляется через посредство переменных о и з . Тогда, пользуясь правилом дифференцирования сложной функции частные производные функции U можно записать в виде:

Аналогично находим частные производные второго порядка:


Подставляем эти выражения для производных в уравнение (*):

т. е. производная зависит только от о :

Отсюда находим:

(вместо произвольной постоянной прибавляем произвольную функцию от з , что можно делать ввиду равенства (2)). Таким образом, из (3) получаем:

где и 1 и и 2 - произвольные функции. Это и есть общее решение уравнения (*).

Используем начальные условия (1) для того, чтобы определить вид функций и 1 и и 2 в данной задаче; для этого подставим эти начальные данные в общее решение (4) и в, полученную из (4) дифференцированием по t :

и, интегрируя, получаем:

При. Будем считать, что С=0 (это допускается, так как если бы постоянная С была отлична от 0 , то можно было бы вместо функций и 1 (x) и и 2 (x) рассматривать функции

Для которых разность значений при x=0 была бы равна нулю). Тогда из (6) имеем

Присоединяем к этому уравнению первое из уравнений (5) и из них находим:

Подставляя полученные функции в общее решение (4), получаем:

В этом частном решении все функции, входящие в правую часть, заданы в начальных условиях задачи.

Если начальные условия таковы, что ц 1 (x)=0 , то решение принимает более простой вид:

Подробное исследование полученного решения позволяет выяснить физический смысл формулы и характер распространения волн по струне.

Пример 1. Найти форму струны, определяемой уравнением

в момент, если

Решение. Здесь a=a , ц(x)=sinx ц 1 (x)=1 - начальная скорость колебания струны. Имеем

т.е. струна параллельна оси абсцисс. ¦

Пример 2. Найти решение уравнения

Решение. Здесь a=2 , ц(x)=0 - начальное положение струны, ц 1 (x)=x - начальная скорость колебания струны. Отсюда

Приведем еще примеры дифференциальных уравнений в частных производных. Если рассматривать задачу о малых свободных колебаниях мембраны, т. е. тонкой пластинки, которая в состоянии равновесия под действием натяжения T 0 лежит в плоскости XOY , а будучи выведена из положения равновесия, колеблется так, что смещение U(x,y,t) точки (x,y) пластинки происходит перпендикулярно плоскости XOY , то смещение удовлетворяет дифференциальному уравнению, аналогичному уравнению (*)

При рассмотрении электромагнитных колебаний приходим к уравнению вида

Уравнение (8) и его частные случаи (7) и (4) называются "волновым уравнением". Исследование и решение волнового уравнения при разнообразных начальных и граничных условиях, отвечающих различным задачам, решение которых привело к волновому уравнению, весьма сложно. Доказано существование и единственность решения волнового уравнения при заданных начальных данных.

Дифференциальные уравнения в частных производных вида

встречаются при изучении целого ряда явлений. Этому дифференциальному уравнению должны удовлетворять: потенциал сил тяготения во всех точках пространства, находящихся вне притягивающих масс; потенциал сил взаимодействия электрических зарядов во всех точках пространства, находящихся вне зарядов, создающих поле; температура в однородном теле, если она не зависит от времени, т. е. если теплообмен стационарный и т. д. Это уравнение носит название уравнения Лапласа. Решения этого уравнения (имеющие непрерывные производные второго порядка) называются "гармоническими функциями". Они очень часто встречаются в различных физических вопросах. Свойства гармонических функций хорошо изучены. При решении уравнения Лапласа начальные условия естественно отсутствуют (так как функция U от времени не зависит), а граничные условия меняются в зависимости от конкретных условий задачи.

Изучение распространения тепла в однородной среде приводит к уравнению в частных производных

где U(x,y,z,t) температура (теплообмен не стационарный). Уравнение вида (9) называется уравнением теплопроводности. Оно решается при начальных и граничных условиях, которые могут быть весьма разнообразными. В случае распространения тепла в теле линейных размеров уравнение (9) принимает вид

Такое уравнение надо решать, например, при изучении распространения тепла в стержне.

Приведенный выше очень неполный перечень основных наиболее часто встречающихся в вопросах математической физики типов дифференциальных уравнений в частных производных показывает, насколько широк и разнообразен круг вопросов, требующих для своего изучения знания теории дифференциальных уравнений. Дифференциальные уравнения - это тот раздел математического анализа, который непосредственно связан с математическим исследованием физических явлений и без знания которого невозможны постановка и решение задач математической физики.

Теоретический минимум

В математической физике при рассмотрении задач, связанных с решением уравнений в частных производных второго порядка, всегда концентрируются
на анализе некоторых основных уравнений: Пуассона, теплопроводности, волнового уравнения. Связано это с возможностью приведения уравнений второго
порядка к т.н. каноническому виду, а именно к тем самым перечисленным только что уравнениям.

Рассмотрим уравнение второго порядка общего вида:
,
где . При этом будем считать без ограничения общности, что матрица коэффициентов симметрическая, т.е.
(это фактически требование независимости смешанных производных от порядка дифференцирования). Далее будем называть эту матрицу матрицей старших
коэффициентов. Строго говоря, одно и то же уравнение в различных точках может относиться к разным типам классификации. Пример будет приведён позже.
В связи с этим замечанием будем говорить о матрице старших коэффициентов в определённой точке. Считаем, что матрица старших коэффициентов представляет
собой матрицу некоторой квадратичной формы. Эту форму можно привести к нормальному виду, т.е. диагональному виду с коэффициентами, равными по модулю
нулю или единице. Напомним, что число положительных коэффициентов называется положительным индексом инерции квадратичной формы, число отрицательных
коэффициентов – отрицательным индексом формы, а число нулевых коэффициентов – дефектом формы. Уравнения можно классифицировать при помощи этих
трёх чисел, которые и будем указывать в порядке их перечисления: . Сумма этих трёх чисел равна количеству независимых переменных.
При этом ясно, что умножение всего уравнения на минус единицу приведёт к тому, что все элементы матрицы старших коэффициентов поменяют знак. Следовательно,
положительный и отрицательный индексы соответствующей формы поменяются ролями. Таким образом, уравнения и принадлежат
к одному типу классификации.
Перечислим основные классы уравнений:
- гиперболическое
- параболическое
- эллиптическое
- ультрагиперболическое
- эллиптико-параболическое
Последние два типа уравнений в стандартных курсах не обсуждаются.

Словесно эту классификацию можно сформулировать следующим образом. Уравнение гиперболическое, если дефект соответствующей квадратичной формы
равен нулю, а один из индексов равен единице. Уравнение параболическое, если его форма имеет равный единице дефект и все коэффициенты одного знака.
Уравнение эллиптическое, если дефект его формы равен нулю и все коэффициенты имеют одинаковый знак.

Примеры уравнений различных типов

Пример 1. Уравнение теплопроводности .

Уравнение параболического типа.

Пример 2. Волновое уравнение .

Уравнение гиперболического типа.

Пример 3. Уравнение Пуассона .

В частности, если справа стоит нуль, то получается уравнение Лапласа.

Пример 4. Уравнение Гельмгольца .

Уравнение эллиптического типа.

Пример 5. Уравнение Трикоми .

Если , то уравнение эллиптическое; если , то уравнение параболическое; если , то уравнение гиперболическое.

Подробнее рассмотрим случай, когда неизвестная функция имеет всего два аргумента:
.
Коэффициенты являются функциями переменных и (в принципе, возможна зависимость и от неизвестной функции (в этом случае уравнение
будет квазилинейным; мы ограничиваемся линейными уравнениями). Уравнение общего вида может быть упрощено путём замены независимых переменных -
приведено к каноническому виду. Этот канонический вид, как и вид замены определяется характеристическим уравнением
.
Характеристическое уравнение, будучи квадратным уравнением относительно производной сразу распадается на два.

Знак подкоренного выражения и определяет тип уравнения.

Гиперболические уравнения
Это случай, когда . Общие интегралы характеристического уравнения .
Выполняется замена .

Параболические уравнения
.
Выполняется замена , где - произвольная дважды дифференцируемая функция, для которой выполняется
условие .

Эллиптические уравнения
Это случай, когда . Общий интеграл характеристического уравнения . Выполняется замена
.

Рассмотрим несколько примеров, в каждом из которых требуется привести уравнение к каноническому виду. Центральную роль в этих примерах играет техника
замены переменных, потому что саму замену указать обычно довольно просто. Совсем просто выполняется линейная замена переменных (случай уравнения с
постоянными коэффициентами).
Замечание . Разумеется при замене переменных есть некоторая свобода. Например, в любом случае замена определяется с точностью до знака, не играющего существенной роли в
преобразовании производных. Также неоднозначность вносит в случае параболического уравнения свобода выбора второй функции для замены переменных, ограниченная весьма
слабыми условиями.

Примеры приведения уравнений второго порядка к каноническому виду

Пример 1. Случай линейной замены переменных в уравнении гиперболического типа .


.
Исходное уравнение, таким образом, относится к гиперболическому типу. Находим общие интегралы найденных уравнений:
.
Вводим замену . Преобразуем производные. В данном случае можно считать, что функция зависит от переменных ,
которые в свою очередь зависят от старых переменных :




.

.

Пример 2. Случай линейной замены переменных в уравнении эллиптического типа .

Составляем характеристическое уравнение:
.
Исходное уравнение, таким образом, относится к эллиптическому типу. Находим общий интеграл любого из найденных уравнений:
.
Вводим замену . Преобразуем производные совершенно аналогично тому, как это делалось в примере 1.



После подстановки этих производных в исходное уравнение получим
.

Пример 3. Случай линейной замены переменных в уравнении параболического типа .

Составляем характеристическое уравнение:
.
Исходное уравнение, таким образом, относится к параболическому типу. Находим общий интеграл найденного уравнения:
.
Отсюда понятно, какой может быть выбрана одна переменная: . Вторую переменную следует выбрать самостоятельно.
Обычно её выбирают наиболее простой, чтобы не усложнять вычисления. Рассмотрим два варианта, чтобы посмотреть, как влияет выбор второй
переменной на окончательный вид уравнения. Сначала положим . Снова преобразуем производные аналогично примеру 1.



После подстановки этих производных в исходное уравнение получим

Дифференциальное уравнение в частных производных (частные случаи также известны как уравнения математической физики , УМФ ) - дифференциальное уравнение , содержащее неизвестные функции нескольких переменных и их частные производные .

Энциклопедичный YouTube

    1 / 5

    ✪ Дифференциальные уравнения в частных производных. Привидение к каноническому виду.

    ✪ Уравнения математической физики. Шаньков В.В. Весенний семестр. Лекция №1

    ✪ Методы математической физики. Тихонов Николай Андреевич (Лекция 10)

    ✪ 8 Дифференциальные уравнения в частных производных Mathcad

    ✪ Дифференциальные уравнения 1. Вязкое торможение

    Субтитры

Введение

Рассмотрим сравнительно простое уравнение в частных производных:

∂ ∂ y u (x , y) = 0 . {\displaystyle {\frac {\partial }{\partial y}}u(x,y)=0\,.}

Задачи доказательств существования и нахождения решений систем нелинейных дифференциальных уравнений в частных производных решаются с использованием теории гладких многообразий , дифференциальной геометрии , коммутативной и гомологической алгебры . Эти методы применяются в физике при изучении лагранжева и гамильтонова формализма, исследовании высших симметрий и законов сохранения .

Классификация

Размерность

Равна количеству независимых переменных. Должна быть не меньше 2 (при 1 получается обыкновенное дифференциальное уравнение).

Линейность

Есть линейные и нелинейные уравнения. Линейное уравнение представимо в виде линейной комбинации производных от неизвестных функций. Коэффициенты при этом могут быть либо постоянными , либо известными функциями.

Линейные уравнения хорошо исследованы, за решение отдельных видов нелинейных уравнений назначены миллионные премии (задачи тысячелетия).

Однородность

Уравнение является неоднородным, если есть слагаемое, не зависящее от неизвестных функций.

Порядок

Порядок уравнения определяется максимальным порядком производной. Имеют значение порядки по всем переменным.

Классификация линейных уравнений второго порядка

Линейные уравнения второго порядка в частных производных подразделяют на параболические , эллиптические и гиперболические .

Две независимые переменные

Линейное уравнение второго порядка, содержащее две независимые переменные, имеет вид:

A ∂ 2 u ∂ x 2 + 2 B ∂ 2 u ∂ x ∂ y + C ∂ 2 u ∂ y 2 + . . . = 0 , {\displaystyle A{\frac {\partial ^{2}u}{\partial x^{2}}}+2B{\frac {\partial ^{2}u}{\partial x\partial y}}+C{\frac {\partial ^{2}u}{\partial y^{2}}}+...=0,}

где A , B , C - коэффициенты, зависящие от переменных x и y , а многоточие означает члены, зависящие от x , y , u и частных производных первого порядка: ∂ u / ∂ x {\displaystyle {\partial u}/{\partial x}} и ∂ u / ∂ y {\displaystyle {\partial u}/{\partial y}} . Это уравнение похоже на уравнение конического сечения :

A x 2 + 2 B x y + C y 2 + ⋯ = 0. {\displaystyle Ax^{2}+2Bxy+Cy^{2}+\cdots =0.}

Так же, как конические сечения разделяются на эллипсы , параболы и гиперболы , в зависимости от знака дискриминанта D = B 2 − A C {\displaystyle D=B^{2}-AC} , классифицируются уравнения второго порядка в заданной точке:

В случае, когда все коэффициенты A , B , C - постоянные, уравнение имеет один и тот же тип во всех точках плоскости переменных x и y . В случае, если коэффициенты A , B , C непрерывно зависят от x и y , множество точек, в которых данное уравнение относится к гиперболическому (эллиптическому), типу образует на плоскости открытую область, называемую гиперболической (эллиптической), а множество точек, в которых уравнение относится к параболическому типу, замкнуто. Уравнение называется смешанным (смешанного типа ), если в некоторых точках плоскости оно гиперболическое, а в некоторых - эллиптическое. В этом случае параболические точки, как правило, образуют линию, называемую линией смены типа или линией вырождения .

Более двух независимых переменных

В общем случае, когда уравнение второго порядка зависит от многих независимых переменных:

∑ i = 1 n ∑ j = 1 n a i j (x 1 , ⋯ , x n) ∂ 2 u ∂ x i ∂ x j + F (x 1 , ⋯ , x n , u , ∂ u ∂ x 1 , ⋯ , ∂ u ∂ x n) = 0 , {\displaystyle \sum _{i=1}^{n}\sum _{j=1}^{n}a_{ij}(x_{1},\cdots ,x_{n}){\frac {\partial ^{2}u}{\partial x_{i}\partial x_{j}}}+F\left(x_{1},\cdots ,x_{n},u,{\frac {\partial u}{\partial x_{1}}},\cdots ,{\frac {\partial u}{\partial x_{n}}}\right)=0,}

оно может быть классифицировано в заданной точке M 0 (x 1 0 , ⋯ , x n 0) {\displaystyle M_{0}(x_{1}^{0},\cdots ,x_{n}^{0})} по аналогии с соответствующей квадратичной формой:

∑ i = 1 n ∑ j = 1 n a i j (x 1 0 , ⋯ , x n 0) t i t j . {\displaystyle \sum _{i=1}^{n}\sum _{j=1}^{n}a_{ij}(x_{1}^{0},\cdots ,x_{n}^{0})t_{i}t_{j}.}

Невырожденным линейным преобразованием

s i = ∑ j = 1 n A i j t j , i = 1 , 2 ⋯ n , det ‖ A i j ‖ ≠ 0 {\displaystyle s_{i}=\sum _{j=1}^{n}A_{ij}t_{j},i=1,2\cdots n,\det \left\|A_{ij}\right\|\neq 0}

квадратичная форма всегда может быть приведена к каноническому виду:

∑ i = 1 n λ i s i 2 . {\displaystyle \sum _{i=1}^{n}\lambda _{i}s_{i}^{2}.}

При этом согласно теореме инерции число положительных, отрицательных и равных нулю коэффициентов λ i {\displaystyle \lambda _{i}} в каноническом виде квадратичной формы является инвариантом и не зависит от линейного преобразования. На основе этого и производится классификация (в точке M 0 {\displaystyle M_{0}} ) рассматриваемого уравнения:

В случае многих независимых переменных может быть проведена и более подробная классификация (необходимость которой в случае двух независимых переменных не возникает):

  1. Гиперболический тип
    1. Нормальный гиперболический тип , если один коэффициент одного знака, а остальные другого.
    2. Ультрагиперболический тип , если коэффициентов как одного знака так и другого более чем один.
  2. Параболический тип может быть дополнительно классифицирован на:
    1. Эллиптически-параболический тип , если только один коэффициент равен нулю, а остальные имеют один знак.
    2. Гиперболически-параболический тип , если только один коэффициент равен нулю, а остальные имеют различные знаки. Аналогично гиперболическому типу он может быть разделён на:
      1. Нормальный гиперболически-параболический тип
      2. Ультрагиперболически-параболический тип
    3. Ультрапараболический тип , если более чем один коэффициент равен нулю. Здесь также возможна дальнейшая классификация в зависимости от знаков не равных нулю коэффициентов.

Существование и единственность решения

Хотя ответ на вопрос о существовании и единственности решения обыкновенного дифференциального уравнения имеет вполне исчерпывающий ответ (теорема Пикара - Линделёфа), для уравнения в частных производных однозначного ответа на этот вопрос нет. Существует общая теорема (теорема Коши - Ковалевской), которая утверждает, что задача Коши для любого уравнения в частных производных, аналитического относительно неизвестных функций и их производных имеет единственное аналитическое решение . Тем не менее, существуют примеры линейных уравнений в частных производных, коэффициенты которых имеют производные всех порядков и не имеющих решения (Леви , ). Даже если решение существует и единственно, оно может иметь нежелательные свойства.

Рассмотрим последовательность задач Коши (зависящую от n ) для уравнения Лапласа :

∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = 0 , {\displaystyle {\frac {\partial ^{2}u}{\partial x^{2}}}+{\frac {\partial ^{2}u}{\partial y^{2}}}=0,} u (x , 0) = 0 , {\displaystyle u(x,0)=0,} ∂ u ∂ y (x , 0) = sin ⁡ n x n , {\displaystyle {\frac {\partial u}{\partial y}}(x,0)={\frac {\sin nx}{n}},}

где n - целое. Производная от функции u по переменной y равномерно стремится к 0 по x при возрастании n , однако решением уравнения является

u (x , y) = (s h n y) (sin ⁡ n x) n 2 . {\displaystyle u(x,y)={\frac {(\mathrm {sh} \,ny)(\sin nx)}{n^{2}}}.}

Решение стремится к бесконечности, если nx не кратно π {\displaystyle \pi } для любого ненулевого значения y . Задача Коши для уравнения Лапласа называется плохо поставленной или некорректной , так как нет непрерывной зависимости решения от начальных данных.

Для систем нелинейных дифференциальных уравнений в частных производных доказательства существования решений и поиск многообразий всех решений проводятся с использованием теории гладких многообразий , дифференциальной геометрии , коммутативной и гомологической алгебры . Эти методы применяются в физике при изучении лагранжева и гамильтонова формализма, исследовании высших симметрий и законов сохранения .

Примеры

Одномерное уравнение теплопроводности

Уравнение, описывающее распространение тепла в однородном стержне относится к параболическому типу и имеет вид

∂ u ∂ t = α ∂ 2 u ∂ x 2 {\displaystyle {\frac {\partial u}{\partial t}}=\alpha {\frac {\partial ^{2}u}{\partial x^{2}}}}

где u (t ,x ) - температура, и α - положительная константа, описывающая скорость распространения тепла. Задача Коши ставится следующим образом:

U (0 , x) = f (x) {\displaystyle u(0,x)\,=f(x)} ,

где f (x ) - произвольная функция.

Уравнение колебания струны

Уравнение относится к гиперболическому типу. Здесь u (t ,x ) - смещение струны из положения равновесия, или избыточное давление воздуха в трубе, или магнитуда электромагнитного поля в трубе, а c - скорость распространения волны. Для того, чтобы сформулировать задачу Коши в начальный момент времени, следует задать смещение и скорость струны в начальный момент времени:

u (0 , x) = f (x) , {\displaystyle u(0,x)=f(x),} ∂ u ∂ t (0 , x) = g (x) , {\displaystyle {\dfrac {\partial u}{\partial t}}(0,x)=g(x),}

Двумерное уравнение Лапласа

Связь с аналитическими функциями

Вещественная и мнимая части любой голоморфной функции f {\displaystyle f} комплексной переменной z = x + i y {\displaystyle z=x+iy} являются сопряжённо гармоническими функциями: они обе удовлетворяют уравнению Лапласа и их градиенты ортогональны. Если f =u +iv , то условия Коши-Римана утверждают следующее:

∂ u ∂ x = ∂ v ∂ y , ∂ v ∂ x = − ∂ u ∂ y , {\displaystyle {\frac {\partial u}{\partial x}}={\frac {\partial v}{\partial y}},\quad {\frac {\partial v}{\partial x}}=-{\frac {\partial u}{\partial y}},}

Складывая и вычитая уравнения друг из друга, получаем:

∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = 0 , ∂ 2 v ∂ x 2 + ∂ 2 v ∂ y 2 = 0. {\displaystyle {\frac {\partial ^{2}u}{\partial x^{2}}}+{\frac {\partial ^{2}u}{\partial y^{2}}}=0,\quad {\frac {\partial ^{2}v}{\partial x^{2}}}+{\frac {\partial ^{2}v}{\partial y^{2}}}=0.}

Также можно показать, что любая гармоническая функция является вещественной частью некоторой аналитической функции.

Граничные задачи

Граничные задачи ставятся следующим образом: найти функцию u , которая удовлетворяет уравнению Лапласа во всех внутренних точках области S , а на границе области ∂ S {\displaystyle \partial S} - некоторому условию. В зависимости от вида условия различают следующие краевые задачи:

Решение уравнений математической физики

Существует два вида методов решения данного типа уравнений:

  • аналитический, при котором результат выводится различными математическими преобразованиями;
  • численный, при котором полученный результат соответствует действительному с заданной точностью, но который требует много рутинных вычислений и поэтому выполним только при помощи вычислительной техники (ЭВМ).

Аналитическое решение

Аналитические решения уравнений математической физики можно получить различными способами. Например:

  • Используя функцию Грина ;
  • Используя метод разделения переменных Фурье;
  • С помощью теории потенциала ;
  • Используя формулу Кирхгофа .

Эти методы разработаны для различных типов уравнений и в некоторых простых случаях позволяют получить решение в виде некоторой формулы или сходящегося ряда, например для

Поделиться: